Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dat \(\sqrt{x+8}=a,\sqrt{x+3}=b\)
=> a.b=\(\sqrt{x^2+11x+24},a^2-b^2=5\)
pt<=> (a-b)(ab+1)=a2-b2
=> (a-b)(ab+1)=(a-b)(a+b)
=> (a-b)(ab+1)-(a-b)(a+b)=0
=> (a-b)(ab+1-a-b)=0
=> (a-b)[a(b-1)-(b-1)]=0
=> (a-b)(a-1)(b-1)=0
=> \(\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)
Voi a=b thi : x+8=x+3
=> pt vo nghiem
Voi a=1 thi x+8=1 => x=-7
Voi b=1 thi x+3=1 => x=-2
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
Điều kiện: x\(\ge\) -3
PT <=> \(\left(\sqrt{x+8}+\sqrt{x+3}\right)\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\left(\sqrt{x+8}+\sqrt{x+3}\right)\)
<=> \(\left(x+8-x-3\right)\left(\sqrt{x^2+11x+24}+1\right)=5\left(\sqrt{x+8}+\sqrt{x+3}\right)\)
<=> \(\sqrt{\left(x+3\right)\left(x+8\right)}+1=\sqrt{x+8}+\sqrt{x+3}\)
<=> \(\left(\sqrt{\left(x+3\right)\left(x+8\right)}-\sqrt{x+8}\right)+\left(1-\sqrt{x+3}\right)=0\)
<=> \(\left(1-\sqrt{x+8}\right).\left(1-\sqrt{x+3}\right)=0\)
<=> \(\sqrt{x+8}=1\) hoặc \(\sqrt{x+3}=1\)
<=> x+ 8 = 1 hoặc x + 3 = 1
<=> x = -7 hoặc x = - 2
Đối chiếu Đk => x = - 2 là nghiệm của PT