Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)
b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)
h)Tương tự các câu trên
i) x = 0
k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)
l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)
=> x + 1 = 3 => x = 2
x.(x+1)=0
suy ra x=0 hoac x+1=0
x=0-1
x=-1
vay x=0 hoac x=-1
mấy câu sau cũng làm tương tự
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=0\)
1, x2 = 0
=> x=0
2,x2=1
=> x= 1 hoặc x=-1
3,x2=3
=>\(x=\sqrt{3}\)
4,x2=6
=>\(x=\sqrt{6}\)
5,x2=7
=>\(x=\sqrt{7}\)
\(=\)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{2^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{3^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{5^3}\right)\)\(...\) \(\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\) \(\left(\frac{1}{125}-\frac{1}{1^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{2^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{3^3}\right)\) \(.\) \(0\) \(....\) \(\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\) \(0\)
Giải:
a) \(\dfrac{1}{4}+x-\dfrac{1}{4}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{4}+\dfrac{3}{4}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{3}{4}x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy ...
b) \(\left|x^2-2x\right|+\left|x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x^2-2x\right|=0\\\left|x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow x=0\)
Vậy ...
c) \(\left|3x^2-2x\right|=x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=x\\3x^2-2x=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2=3x\\3x^2=x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-3x=0\\3x^2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x\left(x-1\right)=0\\x\left(3x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
\(\left(2.x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(2x=5-1\)
\(2x=4\)
\(x=\frac{4}{2}\)
\(x=2\)
(2.x+1)3=125
=> (2.x+1)3=53
=> 2.x+1=5
2.x =5-1
2.x =4
x = 4:2
x =2