Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{\sqrt{5x-4}}{\sqrt{x+1}}=2\Rightarrow2\sqrt{x+1}=\sqrt{5x-4}\)
\(\Leftrightarrow4\left(x+1\right)=5x-4\)(bình phương 2 vế)
\(\Leftrightarrow4x+4=5x-4\)
\(\Leftrightarrow x=8\)
b)
\(\sqrt{\frac{2x-1}{x+1}}=2\Leftrightarrow\frac{\sqrt{2x-1}}{\sqrt{x+1}}=2\)
\(\Rightarrow2\left(\sqrt{2x-1}\right)=\sqrt{x+1}\)(tích chéo)
\(\Leftrightarrow4\left(2x-1\right)=x+1\)
\(\Leftrightarrow8x-4=x+1\)
\(\Leftrightarrow x=\frac{5}{7}\)
\(\frac{\sqrt{5x-4}}{\sqrt{x+1}}=2\)
\(\Leftrightarrow\frac{5x-4}{x+1}=4\)
\(\Leftrightarrow5x-4=4\left(x+1\right)\)
\(\Leftrightarrow5x-4=4x+4\)
\(\Leftrightarrow5x-4x=4+4\)
\(\Leftrightarrow x=8\)
\(\Rightarrow x=8\)
a) ĐK: \(x\ge5\)
\(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)
\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)
\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\) (t/m)
Vậy
b) \(-5x+7\sqrt{x}=-12\)
\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
đến đây tự làm
c) d) e) bạn bình phương lên
f) \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)
\(\ge\sqrt{9}+\sqrt{25}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)
Vậy...
Đề bài bị thiếu.
ĐK x >=5.
\(pt\Leftrightarrow\frac{\sqrt{x^2}}{\sqrt{x}\left(\sqrt{x}-\sqrt{x-5}\right)}+\frac{1}{\sqrt{x}-\sqrt{x-5}}=0\)
<=> \(\frac{\sqrt{x}}{\sqrt{x}-\sqrt{x-5}}+\frac{1}{\sqrt{x}-\sqrt{x-5}}=0\)
<=> \(\frac{\sqrt{x}+1}{\sqrt{x}-\sqrt{x-5}}=0\)phương trình vô nghiệm.