\(\frac{x}{x-\sqrt{x^2-5x}}+\frac{1}{\sqrt{x}-\sqrt{x-5}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

Đề bài bị thiếu.

ĐK x >=5.

\(pt\Leftrightarrow\frac{\sqrt{x^2}}{\sqrt{x}\left(\sqrt{x}-\sqrt{x-5}\right)}+\frac{1}{\sqrt{x}-\sqrt{x-5}}=0\)

<=> \(\frac{\sqrt{x}}{\sqrt{x}-\sqrt{x-5}}+\frac{1}{\sqrt{x}-\sqrt{x-5}}=0\) 

<=> \(\frac{\sqrt{x}+1}{\sqrt{x}-\sqrt{x-5}}=0\)phương trình vô nghiệm.

16 tháng 8 2017

mọi người jup mình giải đi khó wá

1 bài thui cx đc

16 tháng 12 2017

a)x=6

b)x=6

d)x=0.2

19 tháng 7 2017

a)

\(\frac{\sqrt{5x-4}}{\sqrt{x+1}}=2\Rightarrow2\sqrt{x+1}=\sqrt{5x-4}\)

\(\Leftrightarrow4\left(x+1\right)=5x-4\)(bình phương 2 vế)

\(\Leftrightarrow4x+4=5x-4\)

\(\Leftrightarrow x=8\)

b)

\(\sqrt{\frac{2x-1}{x+1}}=2\Leftrightarrow\frac{\sqrt{2x-1}}{\sqrt{x+1}}=2\)

\(\Rightarrow2\left(\sqrt{2x-1}\right)=\sqrt{x+1}\)(tích chéo)

\(\Leftrightarrow4\left(2x-1\right)=x+1\)

\(\Leftrightarrow8x-4=x+1\)

\(\Leftrightarrow x=\frac{5}{7}\)

17 tháng 11 2019

\(\frac{\sqrt{5x-4}}{\sqrt{x+1}}=2\)

\(\Leftrightarrow\frac{5x-4}{x+1}=4\)

\(\Leftrightarrow5x-4=4\left(x+1\right)\)

\(\Leftrightarrow5x-4=4x+4\)

\(\Leftrightarrow5x-4x=4+4\)

\(\Leftrightarrow x=8\)

\(\Rightarrow x=8\)

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...