Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{3}-\frac{5x}{6}=\frac{x}{4-5}\)
\(\Leftrightarrow\frac{2x}{6}-\frac{5x}{6}=\frac{x}{-1}\Leftrightarrow\frac{-x}{2}=\frac{x}{-1}\)
\(\Leftrightarrow x=2x\Leftrightarrow x-2x=0\Leftrightarrow x\left(1-2\right)=0\Leftrightarrow x=0\)
b, \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{1}+\frac{x+3}{4}\)
\(\Leftrightarrow\frac{8x-3-6x+4}{4}=\frac{8x-4+x+3}{4}\)
Khử mẫu : \(2x+1=9x-1\Leftrightarrow-7x=-2\Leftrightarrow x=\frac{2}{7}\)
a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)
\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)
\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)
\(\Leftrightarrow108-24x+12=324-27x+27\)
\(\Leftrightarrow3x=231\)
\(\Rightarrow x=77\)
c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)
\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)
\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)
\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
a.=\(\frac{7x+2}{3xy^2}.\frac{x^2y}{14x+4}\)
=\(\frac{7x+2}{3y}.\frac{x^2y}{2\left(7x+2\right)}\)
=\(\frac{1}{3y}.\frac{x}{2}\)
=\(\frac{x}{6y}\)
b.=\(\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)
=\(\frac{2}{3x-1}.\frac{-15x+5}{3y^2}\)
=\(\frac{2}{3x-1}.\frac{-5\left(3x-1\right)}{3y^2}\)
=\(\frac{-10}{3y^2}\)
c.=\(\frac{3\left(x^3+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3\left(x+1\right).\left(x^2-x+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3x+3}{x-1}\)
d.=\(\frac{4\left(x+3\right)}{.\left(3x-1\right)}.\frac{1-3x}{x^2+3x}\)
=\(\frac{4\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x\left(x+3\right)}\)
=\(\frac{-4}{x^2}\)
e.=\(\frac{2\left(2x+3y\right)}{x-1}.\frac{1-x^3}{4x^2+12xy+9y^2}\)
=\(2.\frac{-\left(1+x+x^2\right)}{2x+3y}\)
=\(-\frac{2x^2+2x+2}{2x+3y}\)
c) \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\)
\(\Leftrightarrow\frac{3.\left(3x+5\right)}{6}-\frac{6}{6}\le\frac{2.\left(x+2\right)}{6}+\frac{6x}{6}\)
\(\Leftrightarrow9x+15-6\le2x+4+6x\)
\(\Leftrightarrow9x-2x-6x\le4-15+6\)
\(\Leftrightarrow x\le-5\)
Vậy nghiệm của bpt là x \(\le-5\)
Mk giải luôn ko ghi lại đầu bài nữa nha
a, 3x-12<0
3x<12
x<4
b,25-15x>0
-15x>-25
x<\(\frac{5}{3}\)
c,3(3x+5)-6\(\le\)2(x+2)+6x
9x+15-6\(\le\)2x+4+6x
9x+9\(\le\)8x+4
9x-8x\(\le\)4-9
x\(\le\)-5
d,6(x+4)-30x+120>10x-15(x-2)
6x+24-30x+120>10x-15x+30
-24x+144>-5x+30
-24x+5x>30-144
-19x>-144
x>6
e, 3(5x-2)>1-2x
15x-6>1-2x
15x+2x>1+6
17x>7
x>\(\frac{7}{17}\)
a) \(\frac{4x-8}{2x^2+1}=0\)
\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x=2
b)
\(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)
\(\Rightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
a)
\(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)
\(\Leftrightarrow\frac{4x-10x-15x}{12}=\frac{3x-60}{12}\)
\(\Leftrightarrow\frac{-10x-11}{12}=\frac{3x-60}{12}\)
\(\Leftrightarrow\frac{-10x-11-3x+60}{12}=0\)
\(\Leftrightarrow\frac{49-13x}{12}=0\)
\(\Rightarrow49-13x=0\)
\(\Rightarrow x=\frac{-49}{13}\)
b)
\(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow\frac{8x-3-6x+4}{4}=\frac{4x-2+x+3}{4}\)
\(\Leftrightarrow\frac{2x+1}{4}=\frac{5x+1}{4}\)
\(\Leftrightarrow\frac{2x+1-5x-1}{4}=0\)
\(\Leftrightarrow\frac{-3x}{4}=0\)
\(\Rightarrow-3x=0\)
\(\Rightarrow x=0\)