\(\frac{x^2-6x-7}{x}\)\(=\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

Đk:\(-7\le x\le3\)

Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(VT=\sqrt{x-3}+\sqrt{7-x}\)

\(\ge\sqrt{x-3+7-x}=\sqrt{4}=2\)

Lại có: \(VP=-x^2+6x-7=-x^2+6x-9+2\)

\(=-\left(x^2-6x+9\right)+2=-\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT\ge2\ge VP\) xảy ra khi \(VT=VP=2\)

\(\Rightarrow-\left(x-3\right)^2+2=2\Rightarrow-\left(x-3\right)^2=0\Rightarrow x=3\) (thỏa)

Vậy pt có nghiệm x=3

8 tháng 6 2017

2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)

\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)

9 tháng 6 2017

Ta có:  a+ b= \(\frac{-1+\sqrt{2}}{2}\)    +    \(\frac{-1-\sqrt{2}}{2}\)=  -1

a*b  =  \(\frac{-1+\sqrt{2}}{2}\)*   \(\frac{-1-\sqrt{2}}{2}\)=   -\(\frac{1}{4}\)

a2  +   b2  =  (a+ b)2  -  2ab  = 1+ \(\frac{1}{2}\)=  \(\frac{3}{2}\)

a4  +  b4  =    (a2  +   b2 )2  -  2a2b2  =  \(\frac{9}{4}\)-   \(\frac{1}{8}\)=  \(\frac{17}{8}\)

a3  +   b3  =  ( a + b)3  -  3ab(a + b )  = -1-\(\frac{3}{4}\)\(\frac{-7}{4}\)

vay a7  +  b7  = (a3 +  b3 )(a4 + b4 ) -a3b3(a+b)=  \(\frac{-7}{4}\)*   \(\frac{17}{8}\)-  (-\(\frac{1}{64}\))  * (-1)  = \(\frac{-239}{64}\)

26 tháng 8 2017

1/ \(3x^2+6x-\frac{4}{3}=\sqrt{\frac{x+7}{3}}\)

Đặt \(t+1=\sqrt{\frac{x+7}{3}}\)

\(\Leftrightarrow3t^2+6t-4=x\) từ đây ta có hệ

\(\hept{\begin{cases}3t^2+6t-4=x\\9x^2+18x-4=t\end{cases}}\)

Tới đây thì đơn giản rồi

26 tháng 8 2017

2/ \(9x^2-x-4=2\sqrt{x+3}\)

\(\Leftrightarrow9x^2=x+3+2\sqrt{x+3}+1\)

\(\Leftrightarrow9x^2=\left(\sqrt{x+3}+1\right)^2\)

Tự làm nốt

19 tháng 7 2019

À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.

19 tháng 7 2019

b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)

ĐK \(x\ge0\)

Pt 

<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)

<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)

 <=> \(4x\sqrt{x+1}=5x+9\)

<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)

<=> \(16x^3-9x^2-90x-81=0\)

<=> \(x=3\)(tm ĐK)

Vậy x=3