\(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}=\frac{2}{\sqrt{x}+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2020

ĐKXĐ : \(x\ge1\)

PT đã cho tương đương với :

\(\sqrt{3x-2}+\sqrt{x-1}=\left[3x-2+2\sqrt{3x^2-5x+2}+x-1\right]-6\)

\(\Leftrightarrow\sqrt{3x-2}+\sqrt{x-1}=\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-6\)

Đặt \(\sqrt{3x-2}+\sqrt{x-1}=t\left(t\ge1\right)\)

Khi đó : \(t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)

\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)

từ đó dễ dàng tìm được x

29 tháng 5 2020

Làm tiếp bài của @Thanh Tùng DZ

Thay t=3 vào cách đặt ta được \(\sqrt{3x-2}+\sqrt{x-1}=3\left(3a\right)\)

Ta có \(\left(3a\right)\Leftrightarrow4x-3+2\sqrt{3x^2-5x+2}=9\)

\(\Leftrightarrow\sqrt{3x^2-5x+2}=6-2x\)

\(\Leftrightarrow\hept{\begin{cases}6-2x\ge0\\3x^2-5x+2=36-24x+4x^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le3\\x=2;x=17\end{cases}\Leftrightarrow x=2}\)

17 tháng 3 2017

\(x_1+x_2=2\\x_1.x_2=2m-1 \)

\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=2\infty\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}=4\)

\(\approx\frac{x_1+x_2}{x_1x_2}+\frac{2}{\sqrt{2m-1}}=4\)

\(\approx\frac{2}{2m-1}+\frac{2}{\sqrt{2m-1}}=4\)

\(\approx\frac{1}{2m-1}+\frac{1}{\sqrt{2m-1}}=2\)

\(\Rightarrow m=1\)

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

x=1 là nghiệm, nhân liên hợp dc bn mình làm nãy giờ mà ấn gửi nó báo Please_Sign_In nản luôn =="

16 tháng 8 2017

mọi người jup mình giải đi khó wá

1 bài thui cx đc

4 tháng 7 2017

b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)

\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)

\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)

\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)

Pt trong ngoặc VN suy ra x=2

4 tháng 7 2017

a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)

\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)

\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)

pt trong căn vô nghiệm

suy ra x=1; x=-1

16 tháng 12 2017

a)x=6

b)x=6

d)x=0.2