\(\frac{1}{\left(2x+1\right)^2}+\frac{1}{\left(2x+2\right)^2}=3\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(ĐK:x\ne\frac{-1}{2},x\ne-1\)

\(PT\Leftrightarrow\left(\frac{1}{2x+1}-\frac{1}{2x+2}\right)^2+\frac{2}{\left(2x+1\right)\left(2x+2\right)}=3\)

\(\Leftrightarrow\left(\frac{1}{\left(2x+1\right)\left(2x+2\right)}\right)^2+\frac{2}{\left(2x+1\right)\left(2x+2\right)}=3\)

Đặt \(\frac{1}{\left(2x+1\right)\left(2x+2\right)}=a\)

\(\Rightarrow a^2+2a-3=0\)\(\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a=1\\a=-3\end{cases}}\)

Đến đây tự giải tiếp nhé

6 tháng 1 2019

Bạn chắc bạn viết đúng đề bài không?

a,x4-10x2+9=0

=>(x-1)(x3+x2-9x-9)=0

=> (x-1)(x+1)(x-3)(x+3)=0

=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)

Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}

16 tháng 4 2019

trả lời

h bn tính theo đenta là ra thôi mà

hok tốt

9 tháng 12 2017

\(\sqrt{2x+7}\)xác định khi \(2x+7\ge0\)

\(\Leftrightarrow2x\ge-7\)

\(\Leftrightarrow x\ge\frac{-7}{2}\)

vậy \(x\ge\frac{-7}{2}\)thì \(\sqrt{2x+7}\)xác định

\(\sqrt{\left(2x-1\right)^2}=3\)

\(\left|2x-1\right|=3\)

\(\Rightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

vậy \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

\(P=\left(\frac{1}{\sqrt{a}+2}+\frac{1}{\sqrt{a}-2}\right):\frac{1}{a-4}\)

\(P=\left(\frac{\sqrt{a}-2}{a-4}+\frac{\sqrt{a}+2}{a-4}\right):\frac{1}{a-4}\)

\(P=\left(\frac{\sqrt{a}-2+\sqrt{a}+2}{a-4}\right):\frac{1}{a-4}\)

\(P=\frac{2\sqrt{a}.\left(a-4\right)}{a-4}\)

\(P=2\sqrt{a}\)

vậy \(P=2\sqrt{a}\)

11 tháng 6 2017

xem lại đề câu 1đi nhé 

11 tháng 6 2017

b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)

c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)

\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

20 tháng 10 2020

Check lại đề phát bạn.