\(\frac{1}{4x^2}=x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{4x^2}=x^2\left(ĐK:x\ne0\right)\)

Đặt \(x^2=v\)đk : v > 0

Thay v vào phương trình ta được :

\(\frac{1}{4v}=v\)

\(\Leftrightarrow v^2=\frac{1}{4}\)

< = > \(v=\frac{1}{2}\)hoặc \(v=-\frac{1}{2}\left(lọai\right)\)

\(\Leftrightarrow v=\frac{1}{2}=x^2\)

\(\Leftrightarrow\)\(x=\frac{-\sqrt{2}}{2}\)hoặc \(x=\frac{\sqrt{2}}{2}\)

23 tháng 11 2016

Đk:\(x\ne-1;x\ne-3;x\ne-5;x\ne-7\)

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{1}{9}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{9}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}\right)=\frac{1}{9}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{9}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{9}\)\(\Leftrightarrow\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}\)

\(\Leftrightarrow2\left(x^2+8x+7\right)=54\)\(\Leftrightarrow x^2+8x+7=27\)

\(\Leftrightarrow x^2+8x-20=0\)\(\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-10\end{cases}}\)(thỏa mãn)

29 tháng 6 2018

xin bài này , 10 phút nữa làm

29 tháng 6 2018

bn kiểm tra lại đề câu a nhé

b) ĐKXĐ: \(\forall x\)

       \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=2\)

\(\Leftrightarrow\)\(\left|x-1\right|+\left|x-3\right|=2\) (1)

Nếu  \(x< 1\)thì:  \(\left(1\right)\Leftrightarrow\left(1-x\right)+\left(3-x\right)=2\)

                                      \(\Leftrightarrow\) \(4-2x=2\) \(\Leftrightarrow\) \(x=1\)(loại)

Nếu \(1\le x< 3\)thì:  \(\left(1\right)\Leftrightarrow\left(x-1\right)+\left(3-x\right)=2\)

                                               \(\Leftrightarrow\) \(x-1+3-x=2\)\(\Leftrightarrow\)\(0x=0\)  luôn đúng

Nếu \(x\ge3\)thì  \(\left(1\right)\Leftrightarrow\left(x-1\right)+\left(x-3\right)=2\)

                                     \(\Leftrightarrow\) \(2x-4=2\) \(\Leftrightarrow\) \(x=3\) luôn đúng

Vậy...

5 tháng 11 2018

\(ĐK:4x-1\ge0\Leftrightarrow x\ge\frac{1}{4}\)

\(pt\Leftrightarrow\frac{x}{\sqrt{4x-1}}-2+\frac{\sqrt{4x-1}}{x}=0\)

\(\Leftrightarrow\frac{x^2-2\sqrt{4x-1}.x+4x-1}{x\sqrt{4x-1}}=0\Leftrightarrow\frac{\left(x-\sqrt{4x-1}\right)^2}{x\sqrt{4x-1}}=0\)

\(\Rightarrow x=\sqrt{4x-1}\Rightarrow x^2=4x-1\Leftrightarrow x^2-4x+1=0\)

\(\Leftrightarrow\left(x-2\right)^2=3\Rightarrow\orbr{\begin{cases}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\)

Nguyễn Hưng Phát ĐKXĐ : \(x>\frac{1}{4}\) mới đúng nha nhok :v 

7 tháng 7 2018

Bạn coi thử có sai đề hay đề có cho x nguyên kh? 

7 tháng 1 2019

\(x^4+2x^3=4x+4\)

\(x^4+2x^3+x^2-x^2-4x-4=0\)

\(x^2\left(x^2+2x+1\right)-\left(x^2+4x+4\right)=0\)

\(\left[x\left(x+1\right)\right]^2-\left(x+2\right)^2=0\)

\(\left(x^2+x-x-2\right)\left(x^2+x+2\right)=0\)

\(\left(x^2-2\right)\left(x^2+x+2\right)=0\)

\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x^2+x+2\right)=0\)

tự làm nốt nhé~

7 tháng 1 2019

\(b,\frac{1}{x^2}+\sqrt{x+2}=\frac{1}{x}+\sqrt{2x+1}\)(1)

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x+2\ge0\\2x+1\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne0\\x\ge\frac{-1}{2}\end{cases}}\)

\(\left(1\right)\Leftrightarrow1+x^2\sqrt{x+2}=x+x^2\sqrt{2x+1}\)

\(\Leftrightarrow\left(1-x\right)+x^2\frac{1-x}{\sqrt{x+2}+\sqrt{2x+1}}=0\)

\(\Leftrightarrow\left(1-x\right)\left(1+\frac{x^2}{\sqrt{x+2}+\sqrt{2x+1}}\right)=0\)(2)

\(\hept{\begin{cases}x\ne0\\x\ge\frac{-1}{2}\end{cases}}\Rightarrow1+\frac{x^2}{\sqrt{x+2}+\sqrt{2x+1}}>0\)

Nên từ (2) => Phương trình đã cho có nghiệm x = 1 (TMĐKXĐ)

21 tháng 10 2017

Số 2 ở trong căn hay ngoài căn thế?

21 tháng 10 2017

Trong ạ =)))

5 tháng 8 2017

a)\(2x^2+x+3=3x\sqrt{x+3}\)

ĐK:\(x\ge-3\)

\(pt\Leftrightarrow2x^2+x-3=3x\sqrt{x+3}-6\)

\(\Leftrightarrow2x^2+x-3=\frac{9x^2\left(x+3\right)-36}{3x\sqrt{x+3}+6}\)

\(\Leftrightarrow2x^2+x-3-\frac{9x^3+27x^2-36}{3x\sqrt{x+3}+6}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)-\frac{9\left(x-1\right)\left(x+2\right)^2}{3x\sqrt{x+3}+6}=0\)

\(\Leftrightarrow\left(x-1\right)\left[2x+3-\frac{9\left(x+2\right)^2}{3x\sqrt{x+3}+6}\right]=0\)

.....................

b) sai đề hay vô nghiệm nhỉ