\(\sqrt{x^2}=\left|-8\right|\)

Tính:

e) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

e) \(\sqrt{x^2}=\left|-8\right|\Rightarrow\left|x\right|=8\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}=\sqrt{\dfrac{8-2\sqrt{7}}{2}}-\sqrt{\dfrac{8+2\sqrt{7}}{2}}+\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}+\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}+\sqrt{2}\)

\(=\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}+\sqrt{2}=\dfrac{\sqrt{7}-1}{\sqrt{2}}-\dfrac{\sqrt{7}+1}{\sqrt{2}}+\sqrt{2}\)

\(=-\dfrac{2}{\sqrt{2}}+\sqrt{2}=-\sqrt{2}+\sqrt{2}=0\)

f) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)

\(=\sqrt{\dfrac{12+2\sqrt{11}}{2}}-\sqrt{\dfrac{12-2\sqrt{11}}{2}}+3\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{11}\right)^2+2.\sqrt{11}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{11}\right)^2-2.\sqrt{11}.1+1^2}{2}}+3\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{11}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{11}-1\right)^2}{2}}+3\sqrt{2}\)

\(=\dfrac{\left|\sqrt{11}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{11}-1\right|}{\sqrt{2}}+3\sqrt{2}=\dfrac{\sqrt{11}+1}{\sqrt{2}}-\dfrac{\sqrt{11}-1}{\sqrt{2}}+3\sqrt{2}\)

\(=\dfrac{2}{\sqrt{2}}+3\sqrt{2}=\sqrt{2}+3\sqrt{2}=4\sqrt{2}\)

29 tháng 9 2020

1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)

\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)

\(=6-8=-2\)

2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=3^2-\left(\sqrt{5}\right)^2\)

\(=9-5=4\)

29 tháng 9 2020

3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)

=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn

12 tháng 7 2018

@Phùng Khánh Linh Cậu ơi giúp tớ với.

12 tháng 7 2018

A = \(\sqrt{2}\left(\sqrt{8}-\sqrt{32}-2\sqrt{18}\right)=\sqrt{16}-\sqrt{64}-2\sqrt{36}=4-8-2\cdot6=-4-12=-16\)

--

\(B=\sqrt{2}-\sqrt{3-\sqrt{5}}=\dfrac{2-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{2-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\dfrac{2-\sqrt{5}+1}{\sqrt{2}}=\dfrac{3-\sqrt{5}}{\sqrt{2}}\)

--

\(C=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\dfrac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\dfrac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\dfrac{2}{\sqrt{2}}=-\sqrt{2}\)

còn lại lúc nx mk lm nốt nhé, h bận

AH
Akai Haruma
Giáo viên
19 tháng 6 2019

Lời giải:

\(B=(\sqrt{2}-\sqrt{3-\sqrt{5}})\sqrt{2}=2-\sqrt{6-2\sqrt{5}}\)

\(=2-\sqrt{5+1-2\sqrt{5}}=2-\sqrt{(\sqrt{5}-1)^2}=2-(\sqrt{5}-1)=3-\sqrt{5}\)

\(C=\sqrt{4-\sqrt{7}}-\sqrt{4}+\sqrt{7}=\sqrt{\frac{8-2\sqrt{7}}{2}}-2+\sqrt{7}\)

\(=\sqrt{\frac{7+1-2\sqrt{7}}{2}}-2+\sqrt{7}\)

\(=\sqrt{\frac{(\sqrt{7}-1)^2}{2}}-2+\sqrt{7}\)

\(=\frac{|\sqrt{7}-1|}{\sqrt{2}}-2+\sqrt{7}=\frac{\sqrt{7}-1}{\sqrt{2}}-2+\sqrt{7}\)

$D$: bạn xem lại đề, mình thấy biểu thức không rút gọn được nữa.

\(E=\sqrt{4+2\sqrt{2}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}\)

\(=\sqrt{4+2\sqrt{2}}.\sqrt{2-\sqrt{2}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)

\(=\sqrt{2}.\sqrt{2^2-(\sqrt{2})^2}=\sqrt{2}.\sqrt{2}=2\)

AH
Akai Haruma
Giáo viên
19 tháng 6 2019

\(F=(\sqrt{2}-\sqrt{3+\sqrt{5}})\sqrt{2}+2\sqrt{5}\)

\(=2-\sqrt{6+2\sqrt{5}}+2\sqrt{5}\)

\(=2-\sqrt{5+1-2\sqrt{5}}+2\sqrt{5}\)

\(=2-\sqrt{(\sqrt{5}-1)^2}+2\sqrt{5}\)

\(=2-(\sqrt{5}-1)+2\sqrt{5}=3+\sqrt{5}\)

\(G=(\sqrt{14}-\sqrt{10}).\sqrt{6+\sqrt{35}}=\sqrt{2}(\sqrt{7}-\sqrt{5})\sqrt{6+\sqrt{35}}\)

\(=(\sqrt{7}-\sqrt{5})\sqrt{12+2\sqrt{35}}=(\sqrt{7}-\sqrt{5}).\sqrt{7+5+2\sqrt{7.5}}\)

\(=(\sqrt{7}-\sqrt{5}).\sqrt{(\sqrt{7}+\sqrt{5})^2}=(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})=7-5=2\)

\(H=\sqrt{11-4\sqrt{7}}-\sqrt{2}.\sqrt{8+3\sqrt{7}}\)

\(=\sqrt{2^2+7-2.2.\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)

\(=\sqrt{(2-\sqrt{7})^2}-\sqrt{3^2+7+2.3\sqrt{7}}=\sqrt{(2-\sqrt{7})^2}-\sqrt{(3+\sqrt{7})^2}\)

\(=|2-\sqrt{7}|-|3+\sqrt{7}|=\sqrt{7}-2-(3+\sqrt{7})=-5\)

16 tháng 6 2018

a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)

\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)

\(=4\sqrt{10}+4\sqrt{2}\)

c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)

\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)

\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)

\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)

\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)

\(=5\sqrt{7}\)

16 tháng 6 2018

d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)

\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)

\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)

\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)

\(=\dfrac{1+12\sqrt{2}}{4}\)

e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)

\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)

\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)

\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)

f) bạn xem đề lại nhé

3 tháng 9 2019

a) \(\sqrt{3^2}-\sqrt{7^2}+\sqrt{\left(-1\right)^2}=|3|-|7|+|-1|=3-7+1=-3\)

b) \(-2\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}+\sqrt{3^2}=-2|2|+|-5|+\left|3\right|=-4+5+3=4\)

c) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2-\sqrt{2}\right|+\left|2+\sqrt{2}\right|=2-\sqrt{2}+2+\sqrt{2}=4\)

d) \(\sqrt{\left(3\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=\left|3\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3\sqrt{2}-\sqrt{2}+1=2\sqrt{2}+1\)

e) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}-1\right|+\left|\sqrt{2}+1\right|=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

f) \(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|+\left|\sqrt{5}+2\right|=\sqrt{5}-2+\sqrt{5}+2=2\sqrt{5}\)

g) \(\sqrt{9-4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{9-2\sqrt{8}}+\sqrt{2-2\sqrt{2}.3+9}=\sqrt{\left(\sqrt{8}-1\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}=\sqrt{8}-1+3-\sqrt{2}=2-\sqrt{2}+\sqrt{8}\)

h) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{12+2\sqrt{4}\sqrt{8}}+\sqrt{6-2\sqrt{2}\sqrt{4}}=\sqrt{\left(\sqrt{4}+\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}=\sqrt{4}+\sqrt{8}+\sqrt{4}-\sqrt{2}\)

k) \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{\left(\sqrt{3}+2\right)^2}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)

19 tháng 6 2018

e , \(\sqrt{11^2-\left(6\sqrt{2}\right)^2}\)

27 tháng 10 2019

g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath

3 tháng 8 2018

Câu 1 =3/10

3 tháng 8 2018

\(1,\sqrt{\left(-0,3\right)^2}=\sqrt{0,09}=0,3\)

\(2,-\frac{1}{2}\sqrt{\left(0,3\right)^2}=-\frac{1}{2}.0,3=-0,15\)

\(3,\sqrt{a^{10}}=\sqrt{\left(a^5\right)^2}=a^5\left(a\ge0\right)\)

\(4,\sqrt{\left(2-x\right)^2}=\left|2-x\right|=2-x\left(x\le2\right)\)

\(5,\sqrt{x^2+2x+1}=\sqrt{\left(x+1\right)^2}=\left|x+1\right|\)

\(6,\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)(Vì \(1< \sqrt{2}\))

\(7,\sqrt{11+6\sqrt{2}}=\sqrt{9+6\sqrt{2}+2}=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

\(8,\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)

                                                                    \(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

                                                                    \(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)

                                                                      \(=-2\)

\(9,\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}\)

                                                                    \(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

                                                                    \(=\sqrt{5}+1+\sqrt{5}-1\)

                                                                    \(=2\sqrt{5}\)

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu a:

ĐKXĐ:...........

\(\sqrt{x^2-x+9}=2x+1\)

\(\Rightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-x+9=(2x+1)^2=4x^2+4x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+5x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x(x-1)+8(x-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x+8)=0\end{matrix}\right.\Rightarrow x=1\)

Vậy.....

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu b:

ĐKXĐ:.........

Ta có: \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)

\(\Rightarrow (\sqrt{5x+7}-\sqrt{x+3})^2=3x+1\)

\(\Leftrightarrow 5x+7+x+3-2\sqrt{(5x+7)(x+3)}=3x+1\)

\(\Leftrightarrow 3(x+3)=2\sqrt{(5x+7)(x+3)}\)

\(\Leftrightarrow \sqrt{x+3}(3\sqrt{x+3}-2\sqrt{5x+7})=0\)

\(x\geq -\frac{7}{5}\Rightarrow \sqrt{x+3}>0\). Do đó:

\(3\sqrt{x+3}-2\sqrt{5x+7}=0\)

\(\Rightarrow 9(x+3)=4(5x+7)\)

\(\Rightarrow 11x=-1\Rightarrow x=\frac{-1}{11}\) (thỏa mãn)

Vậy..........