Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
b. \(\sqrt{x-4}+\sqrt{x^2-3x+4}=x\)
(ĐKXĐ: \(x\ge4\))
\(\Leftrightarrow\sqrt{x^2-3x+4}=x-\sqrt{x-4}\)
\(\Leftrightarrow x^2-3x+4=x^2+x-4-2\sqrt{x\left(x-4\right)}\)
\(\Leftrightarrow x^2-3x+4-x^2-x+4+2\sqrt{x^2-4x}=0\Leftrightarrow-4x+8+2\sqrt{x^2-4x}=0\Leftrightarrow-2\left(2x-4-\sqrt{x^2-4x}\right)=0\Leftrightarrow2x-4-\sqrt{x^2-4x}=0\Leftrightarrow\sqrt{x^2-4x}=2x-4\Leftrightarrow x^2-4x=4x^2+16-16x\Leftrightarrow x^2-4x^2-4x+16x-16=0\Leftrightarrow-3x^2+12x-16=0\Leftrightarrow3x^2-12x+16=0\)
Ta có: \(\Delta=b^2-4ac=\left(-12\right)^2-4.3.16=-48< 0\)
=> pt vô nghiệm.
Vậy pt đã cho vô nghiệm.
ĐK : x > 3/2
Đặt \(\sqrt{3x-2}=a\left(a>0\right)\) . Khi đó pt thành :
\(1+\dfrac{x}{a}=\dfrac{1+a}{x}\Leftrightarrow\dfrac{a+x}{a}=\dfrac{a+1}{x}\Leftrightarrow a^2+a=ax+x^2\Leftrightarrow x^2+a\left(x-1\right)-a^2=0\)
hay \(\sqrt{3x-2}\left(x-1\right)+x^2-3x+2=0\Leftrightarrow\left(\sqrt{3x-2}-1\right)\left(x-1\right)+x^2-2x+1=0\Leftrightarrow\dfrac{3x-3}{\sqrt{3x-2}+1}\left(x-1\right)+\left(x-1\right)^2=0\Leftrightarrow\dfrac{3\left(x-1\right)^2}{\sqrt{3x-2}+1}+\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2\left(\dfrac{3}{\sqrt{3x-2}+1}+1\right)=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\left(tm\right)\)
Vì \(\dfrac{3}{\sqrt{3x-2}+1}+1>0\)
Vậy nghiệm của pt là x = 1
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
a,\(\sqrt{3x+1}=3x-1\) Đk:\(x\ge\dfrac{-1}{3}\)
\(< =>3x+1=9x^2-6x+1\)
\(< =>9x-9x^2=0\)
\(< =>9x\left(1-x\right)=0\)
\(< =>x=0\) hoặc \(x=1\)
b,\(2+\sqrt{3x-5}=x+1\) Đk:\(x\ge\dfrac{5}{3}\)
\(< =>\sqrt{3x-5}=x-1\)
\(< =>3x-5=x^2-2x+1\)
\(< =>x^2+x+6=0\)(vô lý vì \(x^2\ge\dfrac{25}{9},x\ge\dfrac{5}{3}\))
=>\(x\in\varnothing\)
c,Đk : \(x\ge\dfrac{-7}{5}\)
\(\)\(\dfrac{5x+7}{x+3}=16\)
\(< =>5x+7=16x+48\)
\(< =>-11x=41 \)
\(< =>x=\dfrac{-41}{11}\)(ko tm đk)
\(=>x\in\varnothing\)
d,tương tự câu c bình phương 2 vế cũng ra \(x\in\varnothing\)
a: =>\(\sqrt{3x-5}+2=x+1\)
\(\Leftrightarrow\sqrt{3x-5}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\x^2-2x+1-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b: \(\Leftrightarrow x-15\sqrt{x}+56=x+11\)
=>-15 căn x=-45
=>x=9
c: =>căn 3x+1=3x-1
\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\9x^2-6x+1-3x-1=0\end{matrix}\right.\Leftrightarrow x=1\)
d: =>(3x+7)/(x+3)=16
=>16x+48=3x+7
=>13x=-41
=>x=-41/13
Lời giải:
ĐKXĐ: $x\geq \frac{-1}{3}$
PT $\Leftrightarrow \frac{x}{\sqrt{x+2}}=\sqrt{3x+1}-\sqrt{x+1}$
$\Leftrightarrow \frac{x}{\sqrt{x+2}}=\frac{2x}{\sqrt{3x+1}+\sqrt{x+1}}$
$\Leftrightarrow x\left(\frac{1}{\sqrt{x+2}}-\frac{2}{\sqrt{3x+1}+\sqrt{x+1}}\right)=0$
Xét các TH:
TH1: $x=0$ (thỏa mãn)
TH2: $\frac{1}{\sqrt{x+2}}-\frac{2}{\sqrt{3x+1}+\sqrt{x+1}}$
$\Leftrightarrow \sqrt{3x+1}+\sqrt{x+1}=2\sqrt{x+2}$
$\Rightarrow 4x+2+2\sqrt{(3x+1)(x+1)}=4(x+2)$
$\Leftrightarrow \sqrt{(3x+1)(x+1)}=3$
$\Rightarrow (3x+1)(x+1)=9$
$\Leftrightarrow 3x^2+4x-8=0$
$\Rightarrow x=\frac{-2\pm 2\sqrt{7}}{3}$
Kết hợp với ĐKXĐ suy ra $x=\frac{-2+2\sqrt{7}}{3}$
Vậy............