\(x^2-3\text{x}+1=\frac{-3}{3}\sqrt{x^4+x^2+1}\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2021

b)\(\sqrt{x^2+2x}\) + \(\sqrt{2x-1}\)\(\sqrt{3x^2+6x-2x+1}\)( ĐKXĐ \(x\ge\frac{1}{2}\))

Đặt a=​​\(\sqrt{x^2+2x}\), b=\(\sqrt{2x-1}\)(\(a>0,b\ge0\)) . Khi đó phương trình trở thành :​

\(a+b\)=\(\sqrt{3a^2-b^2}\)

\(\Leftrightarrow a^2+2ab+b^2=3a^2-b^2\)

\(\Leftrightarrow a^2-ab-b^2=0\)

Chia cả hai vế cho \(a^2\)-> phân tích thành nhân tử -> tìm \(\frac{a}{b}\)-> x -> thử ĐKXĐ

13 tháng 9 2021

TÌm \(\frac{b}{a}\)nhé không phải \(\frac{a}{b}\)mk đánh máy lộn

17 tháng 9 2019

\(x=1\)

NV
14 tháng 9 2020

Nhân 2 vế của giả thiết với \(\sqrt{x^2+3}-x\) và rút gọn ta được:

\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\) (1)

Nhân 2 vế của giả thiết với \(\sqrt{y^2+3}-y\) và rút gọn ta được:

\(x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\) (2)

Cộng vế với vế (1) và (2) và rút gọn:

\(\Rightarrow x+y=0\Rightarrow y=-x\)

\(\Rightarrow P=\left(\sqrt{x^2+3}-x\right)\left(\sqrt{x^2+3}+x\right)=3\)

NV
3 tháng 6 2020

\(sinx+cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

\(=\sqrt{2}cos\left(\frac{\pi}{2}-\left(x+\frac{\pi}{4}\right)\right)=\sqrt{2}cos\left(\frac{\pi}{4}-x\right)=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)

\(sinx-cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx-\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)

\(=-\sqrt{2}sin\left(\frac{\pi}{4}-x\right)=-\sqrt{2}cos\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x\)

\(=sin^2x-cos^2x+sin2x=sin2x-cos2x\)

\(=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)\)

Bạn ghi ko đúng đề

3 tháng 6 2020

cos4x - sin4x + sin2x

22 tháng 5 2016

1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)

\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)

23 tháng 5 2016

mk ra câu 1 r b lm giúp mk câu 2,3 đc k

 

23 tháng 9 2019

1/ ĐKXĐ:...

\(\Leftrightarrow\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}=\frac{x+5}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(1-\sqrt{x+1}\right)^2}=\frac{x+5}{2}\)

\(\Leftrightarrow\sqrt{x+1}+1+\left|1-\sqrt{x+1}\right|=\frac{x+5}{2}\)

Nếu \(0\ge x\ge-1\Rightarrow\left|1-\sqrt{x+1}\right|=1-\sqrt{x+1}\)

\(\Rightarrow2=\frac{x+5}{2}\Leftrightarrow x=-1\left(tm\right)\)

Nếu \(x>0\Rightarrow\left|1-\sqrt{x+1}\right|=\sqrt{x+1}-1\)

\(\Rightarrow2\sqrt{x+1}=\frac{x+5}{2}\Leftrightarrow16x+16=x^2+10x+25\)

\(\Leftrightarrow x^2-6x+9=0\Leftrightarrow x=3\left(tm\right)\)

Vậy...

Câu dưới tương tự