\(x\sqrt{x}-8=0\)

b) \(\sqrt{2x}-\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Giải câu d thôi mấy câu còn lại đơn giản lắm nên bạn tự làm.

d/ \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

Điều kiện \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(2-\sqrt{x-1}\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=1\)

\(\Leftrightarrow|2-\sqrt{x-1}|+|3-\sqrt{x-1}|=1\)

Đây chỉ là phương trình cơ bản của trị tuyệt đối lớp 6, 7 học rồi nên bạn tự làm nhé.

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu a:

ĐKXĐ:...........

\(\sqrt{x^2-x+9}=2x+1\)

\(\Rightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-x+9=(2x+1)^2=4x^2+4x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+5x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x(x-1)+8(x-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x+8)=0\end{matrix}\right.\Rightarrow x=1\)

Vậy.....

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu b:

ĐKXĐ:.........

Ta có: \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)

\(\Rightarrow (\sqrt{5x+7}-\sqrt{x+3})^2=3x+1\)

\(\Leftrightarrow 5x+7+x+3-2\sqrt{(5x+7)(x+3)}=3x+1\)

\(\Leftrightarrow 3(x+3)=2\sqrt{(5x+7)(x+3)}\)

\(\Leftrightarrow \sqrt{x+3}(3\sqrt{x+3}-2\sqrt{5x+7})=0\)

\(x\geq -\frac{7}{5}\Rightarrow \sqrt{x+3}>0\). Do đó:

\(3\sqrt{x+3}-2\sqrt{5x+7}=0\)

\(\Rightarrow 9(x+3)=4(5x+7)\)

\(\Rightarrow 11x=-1\Rightarrow x=\frac{-1}{11}\) (thỏa mãn)

Vậy..........

24 tháng 8 2017

a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)

Vay S = { 2 }

b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)

Vay S = { 4 }

c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)

Vay S = {\(\sqrt{2}\) }

d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)

Vay S = { - 3/2 }

e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)

Vay S = { 3 }

F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)

<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)

Vay S = { 1/2 }

g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)

24 tháng 8 2017

bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả

20 tháng 8 2019

a) \(\sqrt{4x}=10\) (ĐKXĐ: 4x>=0 <=> x>=0)

\(\Leftrightarrow4x=100\)

\(\Leftrightarrow x=25\)

\(S=\left\{25\right\}\)

b) \(\sqrt{x^2-2x+1}=8\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=8\)

\(\Leftrightarrow x-1=8\)

\(\Leftrightarrow x=9\)

\(S=\left\{9\right\}\)

c) \(\sqrt{x^2-6x+9}=\sqrt{1-6x+9x^2}\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(1-3x\right)^2}\)

\(\Leftrightarrow x-3=1-3x\) hoặc \(\Leftrightarrow x-3=-1+3x\)

\(\Leftrightarrow x+3x=1+3\) \(\Leftrightarrow x-3x=-1+3\)

\(\Leftrightarrow4x=4\) \(\Leftrightarrow-2x=2\)

\(\Leftrightarrow x=1\) \(\Leftrightarrow x=-1\)

\(S=\left\{1;-1\right\}\)

d) \(\sqrt{2x-5}=x-2\)

\(\Leftrightarrow2x-5=x^2-4x+4\)

\(\Leftrightarrow-x^2+2x+4x-5-4=0\)

\(\Leftrightarrow-x^2+6x-9=0\)

\(\Leftrightarrow x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

\(S=\left\{3\right\}\)

e) \(\sqrt{x^2-2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2-2x+1=x+1\)

\(\Leftrightarrow x^2-2x-x+1-1=0\)

\(\Leftrightarrow x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

\(S=\left\{0;3\right\}\)

g) \(\sqrt{x^2-9}-\sqrt{x-3}=0\) ( ĐKXĐ: x-3>=0 <=> x>=3)

\(\Leftrightarrow\sqrt{x^2-9}=\sqrt{x-3}\)

\(\Leftrightarrow x^2-9=x-3\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x+2=0\) hoặc \(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=-2\) \(\Leftrightarrow x=3\)

\(S=\left\{-2;3\right\}\)

h) \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow x-2+x-3-1=0\)

\(\Leftrightarrow2x-6=0\)

\(\Leftrightarrow x=3\)

\(S=\left\{3\right\}\)

i) \(\sqrt{\frac{2x-3}{x-1}}=2\)

\(\Leftrightarrow\frac{2x-3}{x-1}=4\)

\(\Leftrightarrow4\left(x-1\right)=2x-3\)

\(\Leftrightarrow4x-4-2x+3=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

\(S=\left\{\frac{1}{2}\right\}\)

l) \(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)

\(\Leftrightarrow x+y-4\sqrt{x}+12-6\sqrt{y-1}=0\)

\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left(y-1-6\sqrt{y-1}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\) hoặc \(\Leftrightarrow\sqrt{y-1}-3=0\)

\(\Leftrightarrow\sqrt{x}=2\) \(\Leftrightarrow\sqrt{y-1}=3\)

\(\Leftrightarrow x=4\) \(\Leftrightarrow y-1=9\)

\(\Leftrightarrow y=10\)

KẾT luận : ..............

Tới đây nhé, nếu mai chưa ai giải thì mình giải hộ cho

CHÚC BẠN HỌC TỐT!

21 tháng 8 2019

m) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)

<=> \(\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)+6\sqrt{x-1}+9}=5\)

<=>\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)

<=>\(\sqrt{x-1}+2+\sqrt{x-1}+3=5\)

<=> \(2\sqrt{x-1}=0\)

<=> \(\sqrt{x-1}=0\) <=>x=1

Vậy \(S=\left\{1\right\}\)

n) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (*) ( đk \(x\ge\frac{1}{2}\))

<=> \(\left(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}\right)^2=2\)

<=> \(x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-2x+1}=2\)

<=> 2x+\(2\sqrt{\left(x-1\right)^2=2}\)

<=> x+\(\left|x-1\right|=2\)(1)

TH1: \(\frac{1}{2}\le x\le1\)

Từ (1) => x+1-x=2

<=> 1=2(vô lý)

TH2: x>1

Từ (1)=> x+x-1=2

<=> 2x=3<=> \(x=\frac{2}{3}\)(tm pt (*))

Vậy \(S=\left\{\frac{2}{3}\right\}\)

p) \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\) (*) (đk :\(x\ge2\))

Đặt \(\left\{{}\begin{matrix}x-2=a\left(a\ge0\right)\\x+1=b\left(b\ge0\right)\end{matrix}\right.\) =>a+b=2x-1

\(\sqrt{a+b}+\sqrt{a}=\sqrt{b}\)

<=> \(\sqrt{a+b}=\sqrt{b}-\sqrt{a}\)

<=> \(a+b=b-2\sqrt{ab}+a\)

<=> 0=\(-2\sqrt{ab}\)

=> \(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) => x=2 (vì x=-1 không thỏa mãn pt(*))

Vậy \(S=\left\{2\right\}\)

q) \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)(*) (đk : \(7\le x\le9\))

Với a,b\(\ge0\) có: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\)(tự cm nha) .Dấu "=" xảy ra <=> a=b

Áp dụng bđt trên có:

\(\sqrt{x-7}+\sqrt{9-x}\le2\sqrt{\frac{x-7+9-x}{2}}=2\sqrt{\frac{2}{2}}=2\) (1)

Có x2-16x+66=(x2-16x+64)+2=(x-8)2+2 \(\ge2\) với mọi x (2)

Từ (1),(2) .Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-7=9-x\\x-8=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x=16\\x=8\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=8\\x=8\end{matrix}\right.\)<=> x=8( tm pt (*))

Vậy \(S=\left\{8\right\}\)

16 tháng 12 2017

a)x=6

b)x=6

d)x=0.2

11 tháng 7 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)     ( SỬA ĐỀ)

\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)

\(|x-1-2|+|x-1-3|=1\)

\(|x-3|+|x-4|=1\)

Với  \(x\le3\)thì  PT thành  \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)

Với  \(3\le x< 4\)thì PT thành  \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)

Với  \(x\ge4\)thì PT thành  \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)

Vậy  \(3\le x\le4\)

12 tháng 7 2019

Dấu căn của x-1 đâu bạn j eiiiii

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

17 tháng 11 2016

e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)

\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)

\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)

Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành

\(2a=-a^2+8\)

\(\Leftrightarrow a^2+2a-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)

\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)

\(\Leftrightarrow-x^2+8x-12=4\)

\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

17 tháng 11 2016

a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)