Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(a+2b-5+b\right)^2-2ab+34=\left(a+2b-5\right)^2+2b\left(a+2b-5\right)+b^2-2ab+34\)
\(A=\left(a+2b-5\right)^2+5b^2-10b+5+29\)
\(A=\left(a+2b-5\right)^2+5\left(b-1\right)^2+29\ge29\)
\(A_{min}=29\) khi \(\hept{\begin{cases}a=3\\b=1\end{cases}}\)
\(B=x+\frac{25}{x}-8\ge2\sqrt{x.\frac{25}{x}}-8=2\)
\(B_{min}=2\) khi \(x=5\)
\(C=\frac{x^2-15x+36}{x}=x+\frac{36}{x}-15\ge2\sqrt{x.\frac{36}{x}}-15=-3\)
\(C_{min}=-3\) khi \(x=6\)
\(a,x^2-x-6=0\)
\(x^2-3x+2x-6=0\)
\(x\left(x-3\right)+2\left(x-3\right)=0\)
\(\left(x+2\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
\(b,x^2+5x+6=0\)
\(x^2+2x+3x+6=0\)
\(x\left(x+2\right)+3\left(x+2\right)=0\)
\(\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
a) ( 3 - x )( x2 + 2x - 7 ) + ( x - 3 )( x2 + x - 5 )
= ( 3 - x )( x2 + 2x - 7 ) - ( 3 - x )( x2 + x - 5 )
= ( 3 - x )( x2 + 2x - 7 - x2 - x + 5 )
= ( 3 - x )( x - 2 )
b) ( x - 5 )2 + 3( 5 - x )
= ( x - 5 )2 - 3( x - 5 )
= ( x - 5 )( x - 5 - 3 ) = ( x - 5 )( x - 8 )
c) 2x( x - 1 )2 - ( 1 - x )3
= 2x( 1 - x )2 - ( 1 - x )3
= ( 1 - x )2( 2x - 1 + x ) = ( 1 - x )2( 3x - 1 )
d) x2 + 8x + 16 = ( x + 4 )2
e) x2 - 4xy + 4y2 = ( x - 2y )2
g) 4x2 - 25y2 = ( 2x )2 - ( 5y )2 = ( 2x - 5y )( 2x + 5y )
h) 25( x + 1 )2 - 4( x - 3 )2
= 52( x + 1 )2 - 22( x - 3 )2
= ( 5x + 5 )2 - ( 2x - 6 )2
= ( 5x + 5 - 2x + 6 )( 5x + 5 + 2x - 6 )
= ( 3x + 11 )( 7x - 1 )
i) x3 + 27 = ( x + 3 )( x2 - 3x + 9 )
k) 8x3 - 125 = ( 2x )3 - 53 = ( 2x - 5 )( 4x2 + 10x + 25 )
l) x3 + 6x2 + 12x + 8 = ( x + 2 )3
m) -x3 + 9x2 - 27x + 27 = -( x3 - 9x2 + 27x - 27 ) = -( x - 3 )3
a. \(8x\left(x-2017\right)-2x+4034=0\)
\(8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\left(8x-2\right)\left(x-2017\right)=0\)
\(\Rightarrow TH1:8x-2=0\)
\(8x=2\)
\(x=\frac{1}{4}\)
\(TH2:x-2017=0\)
\(x=2017\)
Vậy \(x\in\left\{\frac{1}{4};2017\right\}\)
Bài 1
a) \(8x\left(x-2017\right)-2x+4034=0\)
\(\Rightarrow8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}\)
Bài 6
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab\)
Bài 5 :
\(a,16x^2-\left(4x-5\right)^2=15\)
\(16x^2-16x^2+40x-25-15=0\)
\(40x-40=0\)
\(40x=40\)
\(x=1\)
\(b,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(4x^2+12x+9-4x^2+4=49\)
\(12x=36\)
\(x=3\)
\(c,\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)
\(4x^2-1+1-4x+4x^2=18\)
\(8x^2-4x-18=0\)
\(2\left(4x^2-2x-9\right)=0\)
\(x=\frac{1-\sqrt{37}}{4}\)
\(d,2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(12x=4\)
\(x=\frac{1}{3}\)
\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây
1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất.
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận
\(a,x^3-x^2-12x+45=0\)
\(\left(x-3\right)\left(x-3\right)\left(x+5\right)=0\)
\(x=3;3;-5\)
\(b,2x^3-5x^2+8x-5=0\)
\(\left(2x^2-3x+5\right)\left(x-1\right)=0\)
\(x=1\)
lm 1 câu đã chán ngắt , giải mấy câu nữa não tớ nổ bùmmm , tớ bt đây là trang web để hc nhưng tạo nên tiếng cười là chính nha ^^