Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)
\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)
\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)
Pt trong ngoặc VN suy ra x=2
a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)
\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)
\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)
pt trong căn vô nghiệm
suy ra x=1; x=-1
a, dk \(x\ge0\)
ap dung bdt cosi ta co
\(\sqrt{x+3}+\frac{4x}{\sqrt{x+3}}\ge2\sqrt{4x}=4\sqrt{x}\)
dau = xay ra \(\Leftrightarrow\sqrt{x+3}=\frac{4x}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Rightarrow x=1\)(tm dk)
kl x=1 la no cua pt
-1; -6
b) ĐK: \(x^2+7x+7\ge0\) (đk xấu quá em ko giải đc;v)
PT \(\Leftrightarrow3x^2+21x+18+2\left(\sqrt{x^2+7x+7}-1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+2\left(\frac{x^2+7x+6}{\sqrt{x^2+7x+7}+1}\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+\frac{2\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+7}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{1}{\sqrt{x^2+7x+7}+1}\right]=0\)
Hiển nhiên cái ngoặc vuông > 0 nên vô nghiệm suy ra x = -1 (TM) hoặc x = -6 (TM)
Vậy....
P/s: Cũng may nghiệm đẹp chứ chứ nghiệm xấu thì tiêu rồi:(
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)
\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)
\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)
b/ ĐKXĐ: ....
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)
\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)
\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)
a/ ĐK: \(x\ge0\)
\(\Leftrightarrow\sqrt{3+x}=x^2-3\)
Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:
\(a=x^2-\left(a^2-x\right)\)
\(\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))
\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)
d/ ĐKXĐ: ...
\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)
\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))
a)Đk:\(0\le x\le1\)
\(\sqrt{x}+\sqrt{1-x}+\sqrt{x+1}=2\)
\(pt\Leftrightarrow\sqrt{x}+\sqrt{1-x}-1+\sqrt{x+1}-1=0\)
\(\Leftrightarrow\sqrt{x}+\frac{1-x-1}{\sqrt{1-x}+1}+\frac{x+1-1}{\sqrt{x+1}-1}=0\)
\(\Leftrightarrow\frac{x}{\sqrt{x}}-\frac{x}{\sqrt{1-x}+1}+\frac{x}{\sqrt{x+1}-1}=0\)
\(\Leftrightarrow x\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{1-x}+1}+\frac{1}{\sqrt{x+1}-1}\right)=0\)
\(\Rightarrow x=0\)
b)\(\frac{3x+3}{\sqrt{x}}=4+\frac{x+1}{\sqrt{x^2-x+1}}\)
\(pt\Leftrightarrow\frac{3x+3}{\sqrt{x}}-6=\frac{x+1}{\sqrt{x^2-x+1}}-2\)
\(\Leftrightarrow\frac{3x+3-6\sqrt{x}}{\sqrt{x}}=\frac{x+1-2\sqrt{x^2-x+1}}{\sqrt{x^2-x+1}}\)
\(\Leftrightarrow\frac{\frac{\left(3x+3\right)^2-36x}{3x+3+6\sqrt{x}}}{\sqrt{x}}=\frac{\frac{\left(x+1\right)^2-4\left(x^2-x+1\right)}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\)
\(\Leftrightarrow\frac{\frac{9x^2+18x+9-36x}{3x+3+6\sqrt{x}}}{\sqrt{x}}=\frac{\frac{x^2+2x+1-4x^2+4x-4}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\)
\(\Leftrightarrow\frac{\frac{9x^2-18x+9}{3x+3+6\sqrt{x}}}{\sqrt{x}}-\frac{\frac{-3x^2+6x-3}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}=0\)
\(\Leftrightarrow\frac{\frac{9\left(x-1\right)^2}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{3\left(x-1\right)^2}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}=0\)
\(\Leftrightarrow3\left(x-1\right)^2\left(\frac{\frac{3}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{1}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\right)=0\)
Dêx thấy: \(\frac{\frac{3}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{1}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}>0\forall....\)
\(\Rightarrow3\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
a ) x = 0
b ) x = 1
k tui nha
thanks