\(\dfrac{2x+3}{-4}\ge\dfrac{4-x}{-3}\)

b) |x+2| = 2x -...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

a) `(2x+3)/(-4) ≥ (4-x)/(-3)`

`<=> (2x+3)/4 ≤ (x-4)/3`

`<=> 3(2x+3) ≤ 4(x-4)`

`<=> 6x+9 ≤ 4x-16`

`<=> 2x ≤ -25`

`<=> x ≤ -25/2`

b) `|x+2| = 2x-10`

TH1: `x+2>=0 <=> x >=-2`

`x+2=2x-10`

`<=>x=12`

TH2: `x<=-2`

`-x-2=2x-10`

`<=>x=8/3 (L)`

Vậy `x=12`.

 

12 tháng 5 2021

a,

⇔ -3(2x + 3) ≥ -4(4 – x )

⇔ -6x – 9 ≥ -16 + 4x

⇔ 16 – 9 ≥ 4x + 6x )

⇔ 7 ≥ 10x

⇔ 0,7 ≥ x hay x ≤ 0,7

Vậy bất phương trình có nghiệm x ≤ 0,7.

b,

ta có :/x+2/=x+2 khi  x+2 >= 0 hay x >= -2
          /x+2/=-( X+2) =-x-2 khi -x-2<0 hay x<-2 
 để giải pt  ta quy về giải hai pt sau :
* x+2 = 2x-10                                               * -x-2=2x-10
<=>-x=-12                                                  <=>-3x = -8 
<=> x =12 ( nhận )                                     <=> x= 8/3 ( nhận )
 vậy pt (1) có TN là S ={12; -8/3}

22 tháng 4 2017

Giải bài 41 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

25 tháng 4 2018

Giải bài 41 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

20 tháng 1 2019

a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(6x^2-5x+3=2x-9x+6x^2\)

\(6x^2-5x+3-6x^2+9x-2x=0\)

\(2x+3=0\)

\(2x=-3\)

\(x=-\dfrac{3}{2}\)

20 tháng 1 2019

b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)

\(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)

\(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)

\(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)

\(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)

\(12x-92-8\left(4x+1\right)=0\)

⇔ 12x - 92 - 32x - 8 = 0

⇔ -100 - 20x = 0

⇔ 20x = -100

⇔ x = -100 : 20

⇔ x = -5

24 tháng 4 2017

Giải bài 7 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

21 tháng 1 2018

a) \(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)

\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}=\dfrac{x}{6}=\dfrac{6x}{6}\)

\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)

\(\Leftrightarrow2x-6x-3=x-6x\)

\(\Leftrightarrow2x-6x-x+6x=3\)

\(\Leftrightarrow x=3\)

\(S=\left\{3\right\}\)

b) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)

\(\Leftrightarrow\dfrac{4\left(2+x\right)}{20}-\dfrac{10x}{20}=\dfrac{5\left(1-2x\right)}{20}+\dfrac{5}{20}\)

\(\Leftrightarrow4\left(2+x\right)-10x=5\left(1-2x\right)+5\)

\(\Leftrightarrow8+4x-10x=5-10x+5\)

\(\Leftrightarrow4x-10x+10x=5+5-8\)

\(\Leftrightarrow4x=2\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

\(S=\left\{\dfrac{1}{2}\right\}\)

22 tháng 4 2017

a)X= 3

b)X= 0,5

20 tháng 1 2019

\(a,6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)

\(\Leftrightarrow6x^2-5x+3=-7x+6x^2\)

\(\Leftrightarrow6x^2-5x+3+7x-6x^2=0\)

\(\Leftrightarrow2x+3=0\Leftrightarrow x=\dfrac{-3}{2}\)

Vậy ....

b,\(\dfrac{2\left(x+4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\Leftrightarrow\dfrac{10\left(x-4\right)-2\left(3+2x\right)}{20}=\dfrac{20x+4\left(1-x\right)}{20}\)

\(\Leftrightarrow10x-40-6-4x=20x+4\left(1-x\right)\)

\(\Leftrightarrow6x-46=16x+4\)

\(\Leftrightarrow6x-16x=4+46\)

\(\Leftrightarrow-10x=50\Leftrightarrow x=-5\)

Vậy...

c,\(\dfrac{2x}{3}+\dfrac{3x-5}{4}=\dfrac{3\left(2x-1\right)}{2}-\dfrac{7}{6}\)

\(\Leftrightarrow\dfrac{8x+3\left(3x-5\right)}{12}=\dfrac{6\left(6x-3\right)-14}{12}\)

\(\Leftrightarrow\dfrac{8x+9x-15}{12}=\dfrac{36x-18-14}{12}\)

\(\Leftrightarrow17x-15=36x-32\)

\(\Leftrightarrow17x-36x=-32-15\)

\(\Leftrightarrow19x=-47\Leftrightarrow x=\dfrac{-47}{19}\)

Vậy...

20 tháng 1 2019

sửa lại c ,

17x-36x=-32-15<=>-19x=-47<=>x=47/19

22 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x+2x=24+1\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)

\(\Leftrightarrow17\left(x-1\right)=12\)

\(\Leftrightarrow17x-17=12\)

\(17x=12+17\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)

c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)

\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\)

\(\Leftrightarrow-x=-2003\)

\(\Leftrightarrow x=2003\)

Vậy phương trình có một nghiệm là x = 2003

29 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow4x+2x+2x=1+24\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy S={\(\dfrac{25}{8}\)}

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow6x-6+3x-3=12-8x+8\)

\(\Leftrightarrow6x+3x+8x=6+3+12+8\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy S={\(\dfrac{29}{17}\)}

22 tháng 4 2017

a) 1x3+3=x32x1x−3+3=x−32−x ĐKXĐ: x2x≠2

Khử mẫu ta được: 1+3(x2)=(x3)1+3x6=x+31+3(x−2)=−(x−3)⇔1+3x−6=−x+3

3x+x=3+613x+x=3+6−1

⇔4x = 8

⇔x = 2.

x = 2 không thỏa ĐKXĐ.

Vậy phương trình vô nghiệm.

b) 2x2x2x+3=4xx+3+272x−2x2x+3=4xx+3+27 ĐKXĐ:x3x≠−3

Khử mẫu ta được:

14(x+3)14x214(x+3)−14x2= 28x+2(x+3)28x+2(x+3)

14x2+42x14x2=28x+2x+6⇔14x2+42x−14x2=28x+2x+6