K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2019

Ta có 5x -3 + 4x + 8 = 9x +5

Đặt 5x -3 = a , 4x + 8 = b , ta có phương trình tương đương

\(â^3+b^3=\left(a+b\right)^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)-a^3-b^3=0\)

\(\Rightarrow3ab\left(a+b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3ab=0\\a+b=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\\a+b=0\end{matrix}\right.\)

Đến đây dễ rồi, thay vào tìm x , y là xong

\(\)

NV
13 tháng 3 2019

Trước hết ta chứng minh tính chất quen thuộc: cho 3 số thực \(a;b;c\) sao cho \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)

Thật vậy, ta có: \(a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(-c\right)\) (do \(a+b+c=0\Rightarrow a+b=-c\))

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+c\right)c+c^2\right)+3abc\)

\(=3abc\)

Áp dụng vào bài toán, pt đã cho tương đương:

\(\left(5x-3\right)^3+\left(4x+8\right)^3-\left(9x+5\right)^3=0\)

\(\Leftrightarrow\left(5x-3\right)^3+\left(4x+8\right)^3+\left(-9x-5\right)^3=0\) (1)

Do \(\left(5x-3\right)+\left(4x+8\right)+\left(-9x-5\right)=0\)

\(\Rightarrow\left(5x-3\right)^3+\left(4x+8\right)^3+\left(-9x-5\right)^3=3\left(5x-3\right)\left(4x+8\right)\left(-9x-5\right)\)

Vậy \(\left(1\right)\Rightarrow3.\left(5x-3\right)\left(4x+8\right)\left(-9x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5x-3=0\\4x+8=0\\-9x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{5}\\x=-2\\x=\frac{-5}{9}\end{matrix}\right.\)

3 tháng 7 2016

a, 2(x+5)=x2+5x

=> 2x+10=x2+5x

=> 0=x2+5x-2x-10

=> x2+3x-10=0

=> x2+5x-2x-10=0

=> x(x+5)-2(x+5)=0

=> (x-2)(x+5)=0

=> x-2 =0 hoặc x+5 =0

=> x=2 hoặc x=-5

b, 4x2-25=(2x-5)(2x+7)

=> (2x)2-52=(2x-5)(2x+7)

=> (2x-5)(2x+5) - (2x-5)(2x+7)=0

=> (2x-5)(2x+5-2x-7)=0

=> (2x-5)(-2)=0

=> 2x-5=0

=> 2x=5

=> x =2,5

c, x3+x=0

=>x(x2+1)=0

=> x=0 hoặc x2+1=0

Mà x2+1 >= 1 nên x=0

d, Hình như là thiếu đề

3 tháng 7 2016

a,=2x+10=x2+5x

   =-x2-2x-5x+10=0

   =-x2-7x+10=0

   Delta=(-7)2-4.-1.10=89

x1=7+căn89/2      x2=7-căn 89/2

CÁC CÂU KHÁC TỰ GIẢI NHA bạn

20 tháng 2 2020

\(\left(3x-2\right)^2-4x\left(x-3\right)=\left(5x+1\right)\left(x-4\right).\)

\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)

\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)

\(\Leftrightarrow19x=-8\)

\(\Rightarrow x=-\frac{8}{19}\)

\(\left(x+3\right)\left(3x-1\right)=9x^2-1\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=\left(3x-1\right)\left(3x+1\right)\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x+3-3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(2-2x\right)=0\)

Th1 : 3x - 1 = 0

=> x = 1/3

Th2: 2 - 2x = 0

=> x = 1

29 tháng 1 2020

a) \(x^4-4x^3+12x-9=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)

\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)

\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)

Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)

b) \(x^5-5x^3+4x=0\)

\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)

\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)

Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)

c) \(x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow x-1=0\)

hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)

hoặc \(x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)

11 tháng 3 2016

<=>(4x-3)3+(5-7x)3+(3x-8)3=-3(3x-8)(4x+3)(7x-5)

=>-3(3x-8)(4x+3)(7x-5)=0

Th1:-3(3x-8)=0

=>3x-8=0

=>3x=8

=>x=\(\frac{8}{3}\)

Th2:4x+3=0

=>4x=-3

=>x=\(-\frac{3}{4}\)

Th3:7x-5=0

=>7x=5

=x=\(\frac{5}{7}\)

10 tháng 4 2020

a/ \(9x^4+6x^2+1=0\)

Đặt \(t=x^2\left(t\ge0\right)\), khi đó phương trình trở thành \(9t^2+6t+1=0\Leftrightarrow\left(3t+1\right)^2=0\Leftrightarrow t=-\frac{1}{3}\left(loai\right)\)

Vậy không tồn tại \(x\) thỏa ycbt

b/ \(x^4+x^3-4x^2+5x-3=0\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-2x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(x^2-x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\\x^2-x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x\in\varnothing\end{matrix}\right.\)

KL: Vậy \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

10 tháng 4 2020

cảm ơn ạ

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

18 tháng 2 2017

a, \(x^3-x^2-4x+4=\left(x-1\right)\left(x^2-4\right)=\left(x-1\right)\left(x-2\right)\left(x+2\right)\)

b, \(x^3-5x^2+2x+8=x^3-4x^2-x^2+4x-2x+8\)

\(=\left(x-4\right)\left(x^2-x-2\right)=\left(x-4\right)\left(x-2\right)\left(x+1\right)\)

18 tháng 2 2017

bạn k cho mik rồi mik trả lời