![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: \(\hept{\begin{cases}x-5\ge0\\x-4-2\sqrt{x-5}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5\\\left(\sqrt{x-5}-1\right)^2\ge0\end{cases}}\Leftrightarrow x\ge5\)
\(\sqrt{36\left(x-4-2\sqrt{x-5}\right)}-18=0\)
\(\Leftrightarrow\sqrt{36\left(x-4-2\sqrt{x-5}\right)}=18\)
\(\Leftrightarrow\left(x-4-2\sqrt{x-5}\right)=9\)
\(\Leftrightarrow\left(\sqrt{x-5}-1\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}-1=3\\\sqrt{x-5}-1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}=4\left(tm\right)\\\sqrt{x-5}=-2\left(l\right)\end{cases}}\Leftrightarrow x=21\left(tm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề đúng không thế.
\(y-3\sqrt{4y^2-4y+5}\) hay \(6-3\sqrt{4y^2-4y+5}\) thế
![](https://rs.olm.vn/images/avt/0.png?1311)
b) ĐK \(3\le x\le5\)(*)
Áp dụng BĐT Bunhiacopsky ta có: \(\sqrt{x-3}+\sqrt{5-x}\le\sqrt{2\cdot\left(x-3+5-x\right)}=\sqrt{4}=2\)
Dấu "=" xảy ra \(\Leftrightarrow x=4\)
Ta lại có \(a^2-8x+18=\left(x-4\right)+2\ge0\forall x\)
Dấu "=" xảy ra <=> x=4
\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\Leftrightarrow x=4\)
Với x=4 thỏa mãn điều kiện (*)
Vậy nghiệm của phương trình là x=4
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\sqrt{x-3}.1\ge\frac{x-3+1}{2}=\frac{x-2}{2}\)\(\left(1\right)\)
\(\sqrt{5-x}.1\ge\frac{5-x+1}{2}=\frac{4-x}{2}\)\(\left(2\right)\)
Cộng \(\left(1\right),\left(2\right)\),ta có \(\sqrt{x-3}+\sqrt{5-x}\ge2\)
Mặt khác: \(x^2-8x+18=\left(x-4\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x=4
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình tương đương
\(x^2+5x+7=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\) Điều kiện x>=-1
Đặt \(\sqrt{x+1}=a,\sqrt{x^2-x+1}=b,\left(a,b\ge0\right)\)=> \(b^2+6a^2=x^2+5x+7\)
Khi đó
\(b^2+6a^2=5ab\) =>\(\orbr{\begin{cases}b=2a\\b=3a\end{cases}}\)
+ b=2a=>x^2-x+1=4(x+1) => x^2-5x-3=0
=>\(\orbr{\begin{cases}x=\frac{5+\sqrt{37}}{2}\\x=\frac{5-\sqrt{37}}{2}\end{cases}}\)(thỏa mãn)
+ b=3a =>x^2-10x-8=0
=> \(\orbr{\begin{cases}x=5+\sqrt{33}\\x=5-\sqrt{33}\end{cases}}\)(thỏa mãn)
Vậy \(S=\left\{5+\sqrt{33},5-\sqrt{33},\frac{5+\sqrt{37}}{2},\frac{5-\sqrt{37}}{2}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ : \(3\le x\le5\)
Áp dụng bất đẳng thức Bunhiacopxki vào vế trái :
\(\left(\sqrt{x-3}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-3+5-x\right)=4\)
\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}\le2\)
Xét vế phải : \(x^2-8x+18=\left(x-4\right)^2+2\ge2\)
Do đó pt tương đương với : \(\begin{cases}\sqrt{x-3}+\sqrt{5-x}=2\\x^2-4x+18=2\end{cases}\) \(\Leftrightarrow x=4\) (tmđk)
Vậy pt có nghiệm x = 4
Đặt điều kiện chuyển vế bình phương là rara