Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) ĐK: \(x>0; x\neq 25; x\neq 36\)
PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)
\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)
\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)
Vậy.......
b)
ĐK: \(x\geq \frac{-1}{2}\)
PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)
\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)
c)
ĐK: \(x\geq 2\)
PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)
\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)
\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)
5.
ĐKXĐ: ...
\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)
\(\Leftrightarrow x=5\)
6.
ĐKXĐ: \(-4\le x\le4\)
\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)
\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)
\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)
\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)
\(\Rightarrow x=\frac{96}{25}\)
1.
Bạn coi lại đề
2.
ĐKXĐ: \(1\le x\le2\)
Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:
\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)
\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)
\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)
\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)
ĐKXĐ:
a/ \(x-2020>0\Rightarrow x>2020\)
b/ \(x\ne0\)
c/ \(3x+5< 0\Rightarrow x< -\frac{5}{3}\)
d/ \(\frac{x-3}{1-x}\ge0\Rightarrow1< x\le3\)
Bài 2: ĐKXĐ tự tìm
a/ \(2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(\Leftrightarrow13\sqrt{2x}=28\Rightarrow\sqrt{2x}=\frac{28}{13}\)
\(\Rightarrow x=\frac{392}{169}\)
b/ \(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\Rightarrow x=9\)
c/ \(3\sqrt{2x+1}>15\Rightarrow\sqrt{2x+1}>5\)
\(\Rightarrow2x+1>25\Rightarrow x>12\)
d/ \(\sqrt{x}+1>12\Rightarrow\sqrt{x}>11\Rightarrow x>121\)
ĐKXĐ các bài bạn tự tìm nhé!
a)\(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
<=>\(\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)
Bình phương 2 vế
=>\(10x-1-2\sqrt{\left(8x+1\right)\left(2x-2\right)}=10x-1-2\sqrt{\left(7x+4\right)\left(3x-5\right)}\)
<=>\(\sqrt{\left(8x+1\right)\left(2x-2\right)}=\sqrt{\left(7x+4\right)\left(3x-5\right)}\)
=>16x2-14x-2=21x2-23x-20
<=>5x2-9x-18=0
<=>x=3 hoặc x=\(-\dfrac{6}{5}\)
Sau đó thử lại nghiệm xem có thõa mãn không (dù tìm ĐKXĐ rồi vẫn phải thử nhé)
b)
\(\sqrt{x+3-4\sqrt{x-1}+\sqrt{x+8-6\sqrt{x-1}}}=1\)
<=>\(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
<=>\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
*)x\(\ge10\)
<=>\(\sqrt{x-1}-2+\sqrt{x-1}-3=1\)
<=>\(2\sqrt{x-1}=6\)
<=>x=10(TM)
*)5\(\le x< 10\)
<=>\(\sqrt{x-1}-2+3-\sqrt{x-1}=1\left(LĐ\right)\)
*)1\(\le x< 5\)
<=>\(2-\sqrt{x-1}+3-\sqrt{x-1}=1\)
<=>\(2\sqrt{x-1}=4\)
<=>x=5(L)
Vậy 5\(\le x\le10\)
c)\(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)
Vế phải:x2-6x+9+4=(x-3)2+4\(\ge4\)(1)
Vế trái: Áp dụng BĐT Bunhia
Ta có:\(\left(\sqrt{6-x}+\sqrt{x+2}\right)^2\le\left(1+1\right)\left(6-x+x+2\right)=16\)
=>Vế trái \(\le4\)(2)
Từ 1 và 2=>Phương trình tương đương:\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\6-x=x+2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)(L)
Vậy PTVN
d)\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
<=>\(\sqrt{x^2-x}=-\sqrt{x^2+x-2}\)
Bình phương 2 vế
=>x2-x=x2+x-2
<=>2x=2
<=>x=1
Thử lại thõa mãn Vậy x=1
1) + ĐK : tự xử
+ pt đã cho \(\Leftrightarrow\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)
\(\Rightarrow8x+1-2x+2-2\sqrt{16x^2-14x-2}=7x+4-3x+5-2\sqrt{21x^2-23x-20}\)
\(\Rightarrow10x-1-2\sqrt{16x^2-14x-2}=10x-1-\sqrt{21x^2-23x-20}\)
\(\Rightarrow16x^2-14x-2=21x^2-23x-20\Rightarrow5x^2-9x-18=0\Rightarrow\left[{}\begin{matrix}x=3\left(N\right)\\x=-\dfrac{6}{5}\left(L\right)\end{matrix}\right.\)
kl: x=5
P/s: + x=5 có nhận hay không phụ thuộc vào đk ở đầu bài, bạn tự giải rồi xét
+ bài này dùng dấu => , không dùng <=>, dùng <=> được nửa số điểm, nếu là gv khó tính sẽ gạch toàn bộ bài
Lời giải:
a) ĐK: $x\geq 2$
PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-3\sqrt{x-2}=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-3)=0$
\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=7\end{matrix}\right.\) (thỏa mãn)
Vậy..........
b) ĐK: $x\geq 0$
PT $\Leftrightarrow (\sqrt{x}-3)^2=0$
$\Leftrightarrow \sqrt{x}-3=0$
$\Leftrightarrow x=9$ (thỏa mãn)
c) ĐK: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4(x-3)}=7$
$\Leftrightarrow 3\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=7$
$\Leftrightarrow 3\sqrt{x-3}=7$
$\Leftrightarrow x-3=(\frac{7}{3})^2$
$\Rightarrow x=\frac{76}{9}$
d)
ĐK: $x\geq \frac{-1}{2}$
PT $\Leftrightarrow 3\sqrt{4(2x+1)}-\frac{1}{3}\sqrt{9(2x+1)}-\frac{1}{2}\sqrt{25(2x+1)}+\sqrt{\frac{1}{4}(2x+1)}=6$
$\Leftrightarrow 6\sqrt{2x+1}-\sqrt{2x+1}-\frac{5}{2}\sqrt{2x+1}+\frac{1}{2}\sqrt{2x+1}=6$
$\Leftrightarrow 3\sqrt{2x+1}=6$
$\Leftrightarrow \sqrt{2x+1}=2$
$\Rightarrow x=\frac{3}{2}$ (thỏa mãn)
Lời giải:
Ta có: \(5\sqrt{x-1}+9\sqrt{x+1}=10\sqrt{\frac{1}{4}(x-1)}+6\sqrt{\frac{9}{4}(x+1)}\)
Áp dụng BĐT Am-Gm ta có:
\(\sqrt{\frac{1}{4}(x-1)}\leq \frac{x-1+\frac{1}{4}}{2}\)
\(\sqrt{\frac{9}{4}(x+1)}\leq \frac{\frac{9}{4}+x+1}{2}\)
Do đó, \(5\sqrt{x-1}+9\sqrt{x+1}\leq 5(x-1+\frac{1}{4})+3(\frac{9}{4}+x+1)\)
\(\Leftrightarrow 5\sqrt{x-1}+9\sqrt{x+1}\leq 8x+6\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-1=\frac{1}{4}\\ x+1=\frac{9}{4}\end {matrix}\right.\Leftrightarrow x=\frac{5}{4}\)
b) ĐK \(3\le x\le5\)(*)
Áp dụng BĐT Bunhiacopsky ta có: \(\sqrt{x-3}+\sqrt{5-x}\le\sqrt{2\cdot\left(x-3+5-x\right)}=\sqrt{4}=2\)
Dấu "=" xảy ra \(\Leftrightarrow x=4\)
Ta lại có \(a^2-8x+18=\left(x-4\right)+2\ge0\forall x\)
Dấu "=" xảy ra <=> x=4
\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\Leftrightarrow x=4\)
Với x=4 thỏa mãn điều kiện (*)
Vậy nghiệm của phương trình là x=4