Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta viết lại pt thành: \(\left(2x-3\right)^2+x-3=\left(x-1\right)\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)
Đặt: \(\left\{{}\begin{matrix}a=2x-3\\b=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\end{matrix}\right.\) ta thu được hệ pt:
\(\left\{{}\begin{matrix}a^2+x-3=\left(x-1\right)b\\b^2+x-3=\left(x-1\right)a\end{matrix}\right.\) Trừ 2pt của hệ ta có:
\(\Leftrightarrow a^2-b^2=\left(x-1\right)\left(b-a\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+x-1\right)=0\)
Ta có trường hợp 1:
\(a=b\Leftrightarrow2x-3=\sqrt{2x^2-6x+6}\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\2x^2-6x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3-\sqrt{3}}{2}\left(ktm\right)\\x=\frac{3+\sqrt{3}}{2}\left(tmđk\right)\end{matrix}\right.\)
Tương tự ta có trường hợp 2:
\(2x-3+\sqrt{2x^2-6x+6}+x-3=0\Leftrightarrow\sqrt{2x^2-6x}=6-3x\Leftrightarrow\left\{{}\begin{matrix}x\le2\\7x^2-30x+36=0\end{matrix}\right.\left(vn\right)\)
Vậy pt có \(n_0\) \(S=\left\{x=\frac{3+\sqrt{3}}{2}\right\}\)
bạn đặt ĐKXĐ để căn thức có nghĩa rồi bình phương 2 vế là ra nha
a/ ĐKXĐ:...
\(\Leftrightarrow4x^2-4x\sqrt{2x-1}-3x^2+6x-3=0\)
\(\Leftrightarrow4x\left(x-\sqrt{2x-1}\right)-3\left(x-1\right)^2=0\)
\(\Leftrightarrow\frac{4x\left(x-1\right)^2}{x+\sqrt{2x-1}}-3\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{4x}{x+\sqrt{2x-1}}=3\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4x=3x+3\sqrt{2x-1}\)
\(\Leftrightarrow x=3\sqrt{2x-1}\)
\(\Leftrightarrow x^2-18x+9=0\) \(\Rightarrow9\pm6\sqrt{2}\)
Vậy pt có 3 nghiệm....
b/ ĐKXĐ:...
\(\Leftrightarrow4x^2-4x\sqrt{4x-3}-x^2+4x-3=0\)
\(\Leftrightarrow4x\left(x-\sqrt{4x-3}\right)-\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\frac{4x\left(x^2-4x+3\right)}{x+\sqrt{4x-3}}-\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\Rightarrow x=...\\\frac{4x}{x+\sqrt{4x-3}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4x=x+\sqrt{4x-3}\)
\(\Leftrightarrow3x=\sqrt{4x-3}\)
\(\Leftrightarrow9x^2-4x+3=0\) (vô nghiệm)
Vậy...
pt \(\Leftrightarrow\left(2x-3\right)^2+x-3=\left(x-1\right)\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)
Đặt \(a=2x-3;b=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)
Ta có hpt \(\hept{\begin{cases}a^2+x-3=\left(x-1\right)b\\b^2+x-3=\left(x-1\right)a\end{cases}}\)
Trừ 2 pt trên ta được: \(a^2-b^2=\left(x-1\right)\left(b-a\right)\Rightarrow\left(a-b\right)\left(a+b+x-1\right)=0\)
+) Nếu \(a=b\Leftrightarrow2x-3=\sqrt{2x^2-6x+6}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\2x^2-6x+3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3-\sqrt{3}}{2}\left(loại\right)\\x=\frac{3+\sqrt{3}}{2}\left(tm\right)\end{cases}}}\)
+) Nếu \(2x-3+\sqrt{2x^2-6x+6}+x-3=0\Leftrightarrow\sqrt{2x^2-6x}=6-3x\)\(\Leftrightarrow\hept{\begin{cases}x\le2\\7x^2-30x+36=0\end{cases}\left(VN\right)}\)
Vậy pt có nghiệm duy nhất: \(x=\frac{3+\sqrt{3}}{2}\)
\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+x-3=\left(x-1\right)\sqrt{2x^2-5x+3-x+3}\)
\(\Leftrightarrow\left(2x-3\right)^2+x+3=\left(x-1\right)\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)
đặt \(\hept{\begin{cases}t=2x-3\\y=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\left(y\ge0\right)\end{cases}}\)
ta có hệ : \(\hept{\begin{cases}t^2+x-3=\left(x-1\right)y\\y^2-\left(x-1\right)t+x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}t^2-\left(x-1\right)y+\left(x-3\right)=0\\y^2-\left(x-1\right)t+\left(x-3\right)=0\end{cases}}\)
\(\Rightarrow t^2-y^2-\left(x-1\right)y+\left(x-1\right)t=0\)
\(\Leftrightarrow\left(t-y\right)\left(t+y\right)+\left(x-1\right)\left(t-y\right)=0\)
\(\Leftrightarrow\left(t-y\right)\left(t+y+x-1\right)=0\)
th1 : \(t-y=0\Leftrightarrow t=y\Leftrightarrow2x-3=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\) ĐK : \(x\ge\frac{3}{2}\)
\(\Leftrightarrow4x^2-12x+9=2x^2-6x+6\)
\(\Leftrightarrow2x^2-6x+3=0\)
\(\Delta=b^2-4ac=\left(-6\right)^2-4\cdot2\cdot3=12\)
\(\Rightarrow\orbr{\begin{cases}x=3+\sqrt{3}\left(tm\right)\\x=3-\sqrt{3}\left(loai\right)\end{cases}}\)
th2 : \(x+y+t-1=0\Leftrightarrow y=1-x-t\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}=1-x-2x+3\)
\(\Leftrightarrow\sqrt{2x^2-6x+6}=4-3x\left(đk:x\le\frac{4}{3}\right)\)
\(\Leftrightarrow2x^2-6x+6=16-24x+9x^2\)
\(\Leftrightarrow7x^2-18x+10=0\)
\(\Delta=b^2-4ac=\left(-18\right)^2-4\cdot7\cdot10=44\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{18+\sqrt{44}}{2}=9+\sqrt{11}\left(loai\right)\\x=\frac{18-\sqrt{44}}{2}=9-\sqrt{11}\left(loai\right)\end{cases}}\)