Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 17 - 14(x + 1) = 13 - 4(x + 1) - 5(x - 3)
<=> 17 - 14x - 14 = 13 - 4x - 4 - 5x + 15
<=> -14x + 3 = -9x + 24
<=> -14x + 9x = 24 - 3
<=> -5x = 21
=> x = -4,2
Ta có : 5x + 3,5 + (3x - 4) = 7x - 3(x - 0,5)
<=> 5x + 3,5 + 3x - 4 = 7x - 3x + 1,5
<=> 8x - 0,5 = 4x + 1,5
=> 8x - 4x = 1,5 + 0,5
=> 4x = 2
=> x = \(\frac{1}{2}\)
\(\Leftrightarrow\left(3x-5\right)^3-3\left(x-1\right)\left(2x-3\right)\left(3x-5\right)+\left(2x-3\right)^3+\left(x-1\right)^3=9\left(x-2\right)^2\left(2x-3\right)\)
\(\Rightarrow x^2-4x+4=0\)
\(\Rightarrow\left(-4\right)^2-4\left(1.4\right)=0\)(cái này là D )
\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{4+-\sqrt{0}}{2}\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)hoặc\(x=2\)
\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=-3x\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)-\left(x^3+27\right)=-3x^2-6x\)
\(\Leftrightarrow-3x^2+3x-28=-3x^2-6x\)
\(\Leftrightarrow3x-28=-6x\Leftrightarrow9x=28\)
\(\Leftrightarrow x=\frac{28}{9}\)
Vậy tập nghiệm S\(=\left\{\frac{28}{9}\right\}\)
Đáp án:
(x−1)3−(x+3)(x2−3x+9)=−3x(x+2)
⇒x3−3x2+3x−1−(x3+33)=−3x2−6x
⇒x3−3x2+3x−1−x3−27+3x2+6x=0
⇒9x−28=0
⇒x=\(\frac{28}{9}\)
Vậyx=\(\frac{28}{9}\)
#Châu's ngốc
Ta có : (x - 2)3 + (3x - 1)(3x + 1) = (x + 1)3
<=> (x - 2)3 - (x + 1)3 = -(3x - 1)(3x + 1)
<=> (x - 2 - x - 1)[(x - 2)2 + 2(x - 2)(x + 1) + (x + 1)2] = -(9x2 - 1)
<=> -3[x2 - 2x + 1 + (2x - 4)(x + 1) + x2 + 2x + 1] = -9x2 + 1
<=> -3(x2 - 2x + 1 + 2x2 + 2x - 4x - 4 + x2 + 2x + 1) = -9x2 + 1
<=> -3(4x2 - 2x - 2) = - 9x2 + 1
<=> -12x2 + 6x + 6 + 9x2 + 1 = 0
<=> -3x2 + 6x + 7 = 0
<=> -3(x2 - 2x - 7/3) = 0
<= >x2 - 2x + 1 - 10/3 = 0
<=> (x - 1)2 = 10/3
<=> \(\orbr{\begin{cases}x-1=\sqrt{\frac{10}{3}}\\x-1=-\sqrt{\frac{10}{3}}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{\frac{10}{3}}\\x=1-\sqrt{\frac{10}{3}}\end{cases}}}\)
Ta có bảng xét dấu :
+) Nếu \(x< -3\Leftrightarrow|x+3|=-x-3\)
\(pt\Leftrightarrow3\left(-x-3\right)-3x=-1\)
\(\Leftrightarrow-3x-9-3x=-1\)
\(\Leftrightarrow-6x=8\)
\(x=\frac{-4}{3}\) ( loại )
+) Nếu \(x\ge-3\Leftrightarrow|x+3|=x+3\)
\(pt\Leftrightarrow3\left(x+3\right)-3x=-1\)
\(\Leftrightarrow3x+9-3x=-1\)
\(\Leftrightarrow9=-1\) ( vô lí )
Vậy phương trình vô nghiệm