Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
Từ phương trình, ta có:
\(\frac{1}{2x-3}-\frac{5}{x}=\frac{3}{x\left(2x-3\right)}\)
\(\frac{x}{\left(2x-3\right)x}-\frac{10x-15}{x\left(2x-3\right)}=\frac{3}{x\left(2x-3\right)}\)
\(\frac{-9x-15}{x\left(2x-3\right)}=\frac{3}{x\left(2x-3\right)}\)
\(\frac{-9x-15-3}{x\left(2x-3\right)}=0\)
\(\frac{-9x-18}{x\left(2x-3\right)}=0\)
<=>-9x-18=0
<=>-9x=18
<=>x=-2
Vậy phương trình có nghiệm duy nhất x=-2
bạn ơi phải là \(\frac{-10x+15}{x\left(2x-3\right)}\) chứ lấy -5(2x-3) thì bằng -10x+15 chứ
a) \(|2x+1|=|x-3|\)
\(\Leftrightarrow|2x+1|-|x-3|=0\)
Lập bảng xét dấu :
x | \(\frac{-1}{2}\) | 3 | |||
2x+1 | - | 0 | + | \(|\) | + |
x-3 | - | \(|\) | - | 0 | + |
Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow-2x-1-3+x=0\)
\(\Leftrightarrow-x=4\)
\(\Leftrightarrow x=-4\left(tm\right)\)
Nếu \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x+1-3+x=0\)
\(\Leftrightarrow3x-2=0\)
\(x=\frac{2}{3}\left(tm\right)\)
Nếu \(x>3\) thì \(|2x+1|=2x+1\)
\(|x-3|=x-3\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)
\(\Leftrightarrow2x+1-x+3=0\)
\(\Leftrightarrow x=-4\) ( loại )
\(x^4+x^2+6x-8=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)
Mà \(\left(x^2+1\right)^2\ge0\forall x\)
\(\left(x-3\right)^2\ge0\forall x\)
Dấu bằng xảy ra khi :
\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)
Lại có \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2=-1\) ( vô lí )
Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)
giải các phương trình sau:
a) 6x-3= 4x+5
b) \(\dfrac{2x+3}{x+1}\)- \(\dfrac{6}{x}\)= 2
c) \(|3x-1|\)=3x
a)\(6x-3=4x+5\)
\(\Rightarrow6x-3-4x-5=0\)
\(\Rightarrow2x-8=0\)
\(\Rightarrow x=4\)
Vậy x=4
b)\(\frac{2x+3}{x+1}-\frac{6}{x}=2\left(ĐKXĐ:x\ne-1;0\right)\)
\(\Rightarrow\frac{2x^2+3x}{x\left(x+1\right)}-\frac{6x+6}{x\left(x+1\right)}=2\)
\(\Rightarrow\frac{2x^2+3x-6x-6}{x\left(x+1\right)}=2\)
\(\Rightarrow2x^2-3x-6=2\left(x^2+x\right)\)
\(\Rightarrow2x^2-3x-6-2x^2-2x=0\)
\(\Rightarrow-5x-6=0\)
\(\Rightarrow x=-\frac{6}{5}\)
Vậy \(x=-\frac{6}{5}\)
c)\(\left|3x-1\right|=3x\left(1\right)\)
TH1:\(x\ge\frac{1}{3}\).PT(1) có dạng:3x-1=3x
0x=1
PT vô nghiệm
TH2:\(x< \frac{1}{3}\).PT(1) có dạng:1-3x=3x
\(\Rightarrow6x=1\)
\(\Rightarrow x=\frac{1}{6}\left(TM\right)\)
Vậy PT có nghiệm là \(\frac{1}{6}\)
a, \(6x-3=4x+5 \)
\(\Leftrightarrow6x-4x=5+3\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
vậy no của pt là : x = 4
b, \(\frac{2x+3}{x+1}-\frac{6}{x}=2\)
ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)
\(\Leftrightarrow\frac{2x^2+3x-6x-6}{x\left(x+1\right)}=2\)
\(\Leftrightarrow\frac{2x^2-3x-6}{x\left(x+1\right)}=2\)
\(\Leftrightarrow2x^2-3x-6=2x^2+2x\)
\(\Leftrightarrow-5x=6\)
\(\Leftrightarrow x=\frac{-6}{5}\)
vậy no của pt là x=-6/5
c, \(\left|3x-1\right|=3x\)
Với \(3x-1\ge0\)
\(\Rightarrow3x-1=3x\Leftrightarrow-1=0\)( vô lí )
Cái j đấy ! xin cậu sau viết đề có tâm nhé
Sửa đề :\(3x+1-3=x\)
\(3x-2=x\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Leftrightarrow x=1\)