
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí

1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............

\(a,-x^3+x^2+4=0\)
\(-\left(x^3-x^2-4\right)=0\)
\(x^3-2x^2+x^2+2x-2x-4=0\)
\(x^2\left(x-2\right)+x\left(x+2\right)-2\left(x+2\right)=0\)
\(x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^2+x+2\right)=0\)
Vì \(x^2+x+2>0\left(\forall x\right)\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
\(2x^2+2xy+y^2=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2=0\)
\(\Leftrightarrow\left(x+y\right)^2+x^2=0\)
\(\Leftrightarrow x=y=0\)

a/ \(x^4+x^2+6x-8=0\Leftrightarrow\left(x^4-16\right)+\left(x^2-x\right)+\left(2x-2\right)+\left(5x+10\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\right)+x\left(x-1\right)+2\left(x-1\right)+5\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(x-2\right)\left(x^2+4\right)+x-1+5\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^3-2x^2+5x-4\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(x^3-x^2\right)+\left(4x-4\right)+\left(x-x^2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-1\right)+4\left(x-1\right)-x\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+4-x\right)=0\)
Vậy x = -2; x =1
b/ đặt x2 + x + 1 = t có:
t (t + 1) = 12
<=> t2 + t - 12 = 0
<=> (t2 - 16) + (t + 4) = 0
<=> (t - 4) (t + 4) + (t + 4) = 0
<=> (t + 4) (t - 4 + 1) = 0
<=> (t + 4) (t - 3) = 0
=> t = -4; t = 3
thay t = x2 + x + 1 đc:
x2 + x + 1 = -4 ; x2 + x + 1 = 3
<=> x2 + x + 5 = 0 <=> x2 + x - 2 = 0
<=> x (loại) <=> (x2 - 1) + (x - 1) = 0
<=> (x - 1) (x + 2) = 0
<=> x = 1; x = -2
c/ đặt x2 + x - 2 = a có:
a (a - 1) = 12
<=> a2 - a - 12 = 0
<=> (a2 - 16) - (a - 4) = 0
làm tương tự câu b
..........

\(\left(x^2-4\right)+\left(8-5.x\right).\left(x+2\right)+4.\left(x-2\right).\left(x+1\right)=0\)
\(\Leftrightarrow x^2-4+8.x+16-5.x^2-10.x+\left(4.x-8\right).\left(x+1\right)=0\)
\(\Leftrightarrow x^2-4+8.x+16-5.x^2-10.x+4.x^2+4.x-8.x-8=0\)
\(\Leftrightarrow0+4-6.x=0\)
\(\Leftrightarrow4-6.x=0\)
\(\Leftrightarrow-6.x=-4\)
\(\Rightarrow x=\frac{2}{3}\)
Vậy x = \(\frac{2}{3}\)

a, \(x^3-x^2-4x+4=\left(x-1\right)\left(x^2-4\right)=\left(x-1\right)\left(x-2\right)\left(x+2\right)\)
b, \(x^3-5x^2+2x+8=x^3-4x^2-x^2+4x-2x+8\)
\(=\left(x-4\right)\left(x^2-x-2\right)=\left(x-4\right)\left(x-2\right)\left(x+1\right)\)

(x^3-9x^2+27x-27)+(x^2-6x+9)=0
(x-3)^3+(x-3)^2=0
(x-3)^2(x-2)=0
<=>x-3=0 hoặc x-2=0
<=>x=3 hoặc x=2

1. \(\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+1-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy ...
\(x\left(x+2\right)-3\left(-x-2\right)=0\)
\(\Leftrightarrow x^2+2x+3x+6=0\)
\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
Vậy ...
Còn cậu nữa chịu rồi !
câu 2 nhé :
\(3x\left(2x-8\right)-\left(2x-8\right)^2=0\)
câu này em phải sử dụng tam thức bậc 2 liệu em đã học chưa z :(????
2(x+2)2 - x3-8 = 0
<=>2(x+2)2-(x3+8)=0
<=>2(x+2)2 - (x+2)(x2+2x+4)= 0
<=>(x+2)(2x+4-x2-2x-4)=0
<=>(x+2)x2=0
=> x=-2 hoặc x=0
\(2\left(x+2\right)^2-\left(x^3+8\right)=0\)
\(2\left(x+2\right)^2-\left(x+2\right)\left(x^2-2x+4\right)=0\)
\(\left(x+2\right)\left(2x+4-x^2+2x-4\right)=0\)
\(\left(x+2\right)\left(4x-x^2\right)=0\)
\(\orbr{\begin{cases}x+2=0\\4x-x^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x\left(4-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\end{cases}}\)
Vậy tập nghiệm của pt là \(x=\left\{-2;0;4\right\}\)