K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

`Answer:`

`\frac{2x^2-3x-2}{x^2-4}=2(ĐK:x\ne+-2)`

`<=>\frac{2x^2-3x-2}{(x+2)(x-2)}=\frac{2(x+2)(x-2)}{(x-2)(x+2)}`

`<=>2x^2-3x-2=2(x+2)(x-2)`

`<=>2x^2-3x-2-2(x+2)(x-2)=0`

`<=>2x^2-3x-2-2x^2+8=0`

`<=>-3x+6=0`

`<=>x=2` (Không thoả mãn điều kiện)

Vậy phương trình vô nghiệm.

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

14 tháng 4 2020

a, x3-3x2+3x-1=0                                                   b, (2x-5)2-(x+2)2=0                                    c, x2-x=3x-3

<=>x3-x2-2x2+2x+x-1=0                                         <=>(2x-5-x-2)(2x-5+x+2)=0                       <=>x2-x-3x+3=0

<=>(x3-x2)-(2x2-2x)+(x-1)=0                                   <=>(x-7)(3x-3)=0                                       <=>x2-4x+3=0

<=>x2(x-1)-2x(x-1)+(x-1)=0                                    <=>x-7=0 hoặc 3x-3=0                               <=>x2-x-3x+3=0

<=>(x-1)(x2-2x+1)=0                                              1, x-7=0                 2, 3x-3=0                       <=>(x2-x)-(3x-3)=0

<=>(x-1)(x-1)2=0                                                      <=>x=7                <=>x=1                          <=>x(x-1)-3(x-1)=0

<=>x-1=0                                                                Vậy TN của PT là S={7;1}                           <=>(x-1)(x-3)=0

<=>x=1                                                                                                                                       <=>x-1=0 hoặc x-3=0

Vậy tập nghiệm của phương trình là S={1}                                                                                1, x-1=0                      2, x-3=0

                                                                                                                                                     <=>x=1                       <=>x=3

                                                                                                                                                     Vậy TN của PT là S={1;3}

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

20 tháng 1 2019

a) \(x^3-3x^2+4=0\)

\(\Leftrightarrow\left(x-2\right)^2.\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b) \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)

\(\Leftrightarrow4x^4-12x^3+7x^2+3x=0\)

\(\Leftrightarrow x\left(2x-3\right)\left(2x^2-3x-1\right)=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow2x=0+3\)

\(\Leftrightarrow2x=3\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

5 tháng 2 2018

a)  \(x^3-3x^2+4=0\)

\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy....

15 tháng 1 2016

a/ (x2 - 4) + (x + 2)(3 - 2x) = 0

    => (x - 2)(x + 2) + (x + 2)(3 - 2x) = 0

    => (x + 2)(x - 2 + 3 - 2x) = 0

    => (x + 2)(1 - x) = 0

    => x + 2 = 0 => x = -2

    hoặc 1 - x = 0 => x = 1

b/ 2x+ 6x= x+ 3x

    => 2x3 + 5x2 - 3x = 0

    => x.(2x2 + 5x - 3) = 0

    => x = 0 

    hoặc 2x2 + 5x - 3 = 0 => (2x - 1)(x + 3) = 0 

    => 2x - 1 = 0 => x = 1/2

    hoặc x + 3 = 0 => x = -3

Vậy x = 0 , x = 1/2 , x = -3

c/ (2x - 5)= (x + 2)2

    => (2x - 5)2 - (x + 2)2 = 0

    => (2x - 5 + x + 2).(2x - 5 - x - 2) = 0 

    => (3x - 3).(x - 7) = 0

    => 3x - 3 = 0 => 3x = 3 => x = 1

    hoặc x - 7 = 0 => x = 7

Vậy x = 1 , x = 7

15 tháng 1 2020

\(x^4+x^3+3x^2+2x+2=0\)

\(\Leftrightarrow x^4+x^3+2x^2+x^2+2x+2=0\)

\(\Leftrightarrow\left(x^4+x^3+x^2\right)+\left(2x^2+2x+2\right)=0\)

\(\Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2+x+1\right)=0\)

\(\Rightarrow x^2+2=0\)hoặc \(x^2+x+1=0\)

\(\cdot x^2+2=0\Rightarrow x^2=-2\left(L\right)\)

\(\cdot x^2+x+1=0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(L\right)\)

Vậy pt vô nghiệm

P/S: bài này chưa rõ là x phức hay thực mà toán 8 nên mình giải thực

12 tháng 2 2016

a)x2+(x-3)(3x-5)=9

<=>x2+3x2-5x-9x+15=9

,<=>4x2-14x+15=9

<=>4x2-14x+6=0

<=>4x2-12x-2x+6=0

<=>4x(x-3)-2(x-3)=0

<=>(x-3)(4x-2)=0

                 =>  x-3=0 hoặc 4x-2=0 =>x=3 hoặc x=1/2

b)(3x+2)2=(x-4)2

<=>(3x+2)2-(x-4)2=0

<=>(3x+2-x+4)(3x+2+x-4)=0                     (HẰNG ĐẲNG THỨC SỐ 3)

<=>(2x+6)(4x-2)=0

           =>2x+6=0 hoặc 4x-2 => x=-3 hoặc x=1/2

c)Chưa ra thông cảm ahihi

13 tháng 2 2016

c,                        x4+2x3-2x2+2x-3 = 0
<=> (x4-x3)+(3x3-3x2)+(x2-x)+(3x-3) = 0
<=> x3(x-1)+3x2(x-1)+x(x-1)+3(x-1)  = 0
<=>                   (x-1)(x3+3x2+x+3) = 0
<=>                 (x-1)[x2(x+3)+(x+3)] = 0
<=>                       (x-1)(x+3)(x2+1) = 0
<=>                                        x-1  =0  hoặc x+3=0   ( vì x2+1 khác 0 )
<=>                                            x =1 hoặc      x= -3

25 tháng 2 2017

a, Đặt \(2^x=t,t>0\)

Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)

Nếu t=2 => x=1

nếu t=8=> x=3

Vậy x=...

b, Đặt: \(2x^2-3x-1=t\)

pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)

* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)

Vậy x=...

15 tháng 3 2018

a. 

\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

b. 

\(=\left(x+1\right)\left(x+1\right)\left(x^2+x+1\right)\)

c.