Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a:\(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{\left(1+\sqrt{3}\right)^2}\)
=\(\sqrt{3}-2+1+\sqrt{3}\)
=\(2\sqrt{3}-1\)
b; dài quá mink lười làm thông cảm
bài 2:
\(\sqrt{x^2-2x+1}=7\)
=>\(\sqrt{\left(x-1\right)^2}=7
\)
=>\(\orbr{\begin{cases}x-1=7\\x-1=-7\end{cases}}\)
=>\(\orbr{\begin{cases}x=8\\x=-6\end{cases}}\)
b: \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
=>\(\sqrt{4\left(x-5\right)}-9\sqrt{x-5}=\sqrt{1-x}\)
\(=2\sqrt{x-5}-9\sqrt{x-5}=\sqrt{1-x}\)
=>\(-7\sqrt{x-5}=\sqrt{1-x}\)
=\(-7.\left(x-5\right)=1-x\)
=>\(-7x+35=1-x\)
=>\(-7x+x=1-35\)
=>\(-6x=-34\)
=>\(x\approx5.667\)
mink sợ câu b bài 2 sai đó bạn
1 a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
= \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
= \(|2-\sqrt{3}|+|1+\sqrt{3}|\)
= \(2-\sqrt{3}+1+\sqrt{3}\)
= \(2+1\)= \(3\)
b) \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{6}{3^2}}-4\sqrt{\frac{6}{2^2}}\right)\cdot\left(3\sqrt{\frac{6}{3^2}}-\sqrt{6}\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\right)\cdot\left(\frac{3}{3}\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\right)\cdot\left(\sqrt{6}\left(1-\sqrt{2}-1\right)\right)\)
= \(\sqrt{6}\frac{1}{6}\cdot\sqrt{6}\left(-\sqrt{2}\right)\)
= \(\sqrt{6}^2\left(\frac{-\sqrt{2}}{6}\right)\)
= \(6\frac{-\sqrt{2}}{6}\)=\(-\sqrt{2}\)
2 a) \(\sqrt{x^2-2x+1}=7\)
<=> \(\sqrt{x^2-2x\cdot1+1^2}=7\)
<=> \(\sqrt{\left(x-1\right)^2}=7\)
<=> \(|x-1|=7\)
Nếu \(x-1>=0\)=>\(x>=1\)
=> \(|x-1|=x-1\)
\(x-1=7\)<=>\(x=8\)(thỏa)
Nếu \(x-1< 0\)=>\(x< 1\)
=> \(|x-1|=-\left(x-1\right)=1-x\)
\(1-x=7\)<=>\(-x=6\)<=> \(x=-6\)(thỏa)
Vậy x=8 hoặc x=-6
b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
<=> \(\sqrt{4\left(x-5\right)}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)
<=> \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)
<=> \(\sqrt{x-5}=\sqrt{1-x}\)
ĐK \(x-5>=0\)<=> \(x=5\)
\(1-x\)<=> \(-x=-1\)<=> \(x=1\)
Ta có \(\sqrt{x-5}=\sqrt{1-x}\)
<=> \(\left(\sqrt{x-5}\right)^2=\left(\sqrt{1-x}\right)^2\)
<=> \(x-5=1-x\)
<=> \(x-x=1+5\)
<=> \(0x=6\)(vô nghiệm)
Vậy phương trình vô nghiệm
Kết bạn với mình nha :)
\(\sqrt{\frac{4}{9-4\sqrt{5}}}+\sqrt{\frac{9}{9+4\sqrt{5}}}=\sqrt{\frac{4}{4-4\sqrt{5}+5}}+\sqrt{\frac{9}{4+4\sqrt{5}+5}}\)
\(=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}+\sqrt{\frac{9}{\left(2+\sqrt{5}\right)^2}}=\frac{2}{\sqrt{5}-2}+\frac{3}{2+\sqrt{5}}\)
\(=\frac{2\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}+\frac{3\left(2-\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}=\frac{2\sqrt{5}+4}{5-4}+\frac{6-3\sqrt{5}}{4-5}\)
\(=2\sqrt{5}+4+3\sqrt{5}-6=5\sqrt{5}-2\)
b) \(\left(5-4\sqrt{3}\right):\frac{2+\sqrt{3}}{2-\sqrt{3}}=\left(5-4\sqrt{3}\right).\frac{2-\sqrt{3}}{2+\sqrt{3}}\)
\(=\left(5-4\sqrt{3}\right).\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\left(5-4\sqrt{3}\right).\frac{4-4\sqrt{3}+3}{4-3}\)
\(=\left(5-4\sqrt{3}\right)\left(7-4\sqrt{3}\right)=35-28\sqrt{3}-20\sqrt{3}+48\)
\(=73-48\sqrt{3}\)
Mình chịu câu c nha
Mình giải trước mấy câu dễ dễ ha.
(Tự add điều kiện vào)
Câu 1: \(2\left(2x+1\right)=\sqrt{x+2}-\sqrt{1-x}\)\(\Leftrightarrow2\left(2x+1\right)=\frac{x+2-\left(1-x\right)}{\sqrt{x+2}+\sqrt{1-x}}\)
Thấy \(x=-\frac{1}{2}\) (thoả ĐKXĐ) là nghiệm pt.
Xét \(x\ne-\frac{1}{2}\) thì pt tương đương \(2=\frac{1}{\sqrt{x+2}+\sqrt{1-x}}\Leftrightarrow\sqrt{x+2}+\sqrt{1-x}=2\) (1)
Bình phương lên: \(x+2+1-x+2\sqrt{\left(x+2\right)\left(1-x\right)}=4\Leftrightarrow\sqrt{\left(x+2\right)\left(1-x\right)}=\frac{1}{2}\) (2)
Đến đây từ (1) và (2) dùng định lí Viete đảo thấy pt vô nghiệm.
-----
Câu 2: (Tư tưởng đổi biến quá rõ ràng)
Đặt \(a=\sqrt{x+3},b=\sqrt{6-x}\). Có hệ: \(\hept{\begin{cases}a+b-ab=\frac{6\sqrt{2}-9}{2}\\a^2+b^2=9\end{cases}}\)
(Tự giải tiếp nha bạn. Tới đây đặt \(S=a+b,P=ab\) là ra thôi)
-----
Câu 4: Đặt \(y=x^2\) thì pt trở thành \(y^2+\sqrt{y+2016}=2016\) (\(y\) không âm)
(Bạn tự CM \(y=k=\frac{\sqrt{8061}-1}{2}\) là nghiệm)
Xét \(0\le y< k\) thì vế trái \(< 2016\), xét \(y>k\) thì vế phải \(>2016\).
Vậy pt có nghiệm duy nhất \(y=k\) như trên. Hay pt đầu có 2 nghiệm (cộng trừ)\(\sqrt{\frac{\sqrt{8061}-1}{2}}\)
\(2\left(\sqrt{\frac{x-1}{4}}-3\right)=2\sqrt{\frac{4x-4}{9}}-\frac{1}{3}\\ \Leftrightarrow\left(2.\sqrt{\frac{x-1}{4}}-2.3\right)=2\sqrt{\frac{4x-4}{9}}-\frac{1}{3}\\ \Leftrightarrow\sqrt{2^2.\left(\frac{x-1}{4}\right)}-6=2.\sqrt{\frac{4\left(x-1\right)}{9}}-\frac{1}{3}\\ \Leftrightarrow\sqrt{x-1}-6=2\sqrt{\frac{4}{9}}.\sqrt{x-1}-\frac{1}{3}\\ \Leftrightarrow\sqrt{x-1}-6=\frac{4}{3}.\sqrt{x-1}-\frac{1}{3}\\ \Leftrightarrow\sqrt{x-1}-\frac{4}{3}\sqrt{x-1}=-\frac{1}{3}+6\\ \Leftrightarrow-\frac{1}{3}\sqrt{x-1}=\frac{17}{3}\\ \Leftrightarrow\sqrt{x-1}=-17\)
<=> vô nghiệm
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow2\left(\frac{\sqrt{x-1}}{2}-3\right)=\frac{4\sqrt{x-1}}{3}-\frac{1}{3}\)
\(\Leftrightarrow\frac{4}{3}\sqrt{x-1}-\sqrt{x-1}=-\frac{17}{3}\)
\(\Leftrightarrow\sqrt{x-1}=-17\) (vô lý)
Vậy pt vô nghiệm
\(PT\left(đk:x\ge1\right)< =>2\left(\frac{\sqrt{x-1}}{\sqrt{4}}-3\right)=2\frac{\sqrt{4x-4}}{\sqrt{9}}-\frac{1}{3}\)
\(< =>\frac{2\sqrt{x-1}}{2}-6=\frac{2.\sqrt{4}.\sqrt{x-1}}{3}-\frac{1}{3}\)
\(< =>\sqrt{x-1}-6=\frac{4}{3}\sqrt{x-1}-\frac{1}{3}\)
\(< =>\frac{4}{3}\sqrt{x-1}-\sqrt{x-1}-\frac{1}{3}+6=0\)
\(< =>\frac{\sqrt{x-1}}{3}+\frac{17}{3}=0\)
Do \(\sqrt{x-1}\ge0=>\frac{\sqrt{x-1}}{3}\ge0=>\frac{\sqrt{x-1}}{3}+\frac{17}{3}>0\)
=> pt vô nghiệm
ĐKXĐ : x ≥ 13
<=> \(2\sqrt{\frac{x-1}{4}-\frac{12}{4}}=2\sqrt{\frac{4\left(x-1\right)}{9}}-\frac{1}{3}\)
<=> \(2\sqrt{\frac{1}{4}\left(x-13\right)}=2\sqrt{\frac{4}{9}\left(x-1\right)}-\frac{1}{3}\)
<=> \(\sqrt{x-13}=\frac{4}{3}\sqrt{x-1}-\frac{1}{3}\)
F F đến đây tính bình phương hai vế nhưng lười quá ;-;