\(2+3\sqrt[3]{9x^2\left(x+2\right)}=2x+3\sqrt[3]{3x\left(x+2\right)^2}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

x=0 ; x=2/3 - cau b 

anh giai tu giai thu

5 tháng 3 2019

Giai giùm đi

8 tháng 12 2015

Câu c nè

Đặt \(3x=a\)

=>\(9x^2=a^2\)

Đăt \(x+2=b\)

=>\(\left(x+2\right)^2=b^2\)

ta có

\(a-b=3x-x-2=2x-2\)

<=>\(2x=a-b+2\)

Khi đó pt đã cho trở thành 

\(2+3\sqrt[3]{a^2b}=a-b+3\sqrt[3]{ab^2}\)\(a-b+3\sqrt[3]{ab^2}-3\sqrt[3]{a^2b}=\left(\sqrt[3]{a}\right)^3-3\sqrt[3]{a^2b}+3\sqrt[3]{ab^2}-b^3=0\)

<=>\(\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^3=0\)

<=>\(\sqrt[3]{a}=\sqrt[3]{b}\)

<=>a=b

=>3x=x+2

<=>2x-2=0

<=>x=1

nhớ tick nha

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

17 tháng 10 2017

\(2+3\sqrt[3]{9x^2\left(x+2\right)}=2x+3\sqrt[3]{3x\left(x+2\right)^2}\)

\(\Leftrightarrow2+3\sqrt[3]{3x\left(x+2\right)^2}-3\sqrt[3]{9x^2\left(x+2\right)}-2=0\)

\(\Leftrightarrow\left(\sqrt[3]{3x}\right)^3-3\times\left(\sqrt[3]{3x}\right)^2\times\sqrt[3]{x+2}+3\times\sqrt[3]{3x}\times\left(\sqrt[3]{x+2}\right)^2-\left(\sqrt[3]{x+2}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt[3]{3x}-\sqrt[3]{x+2}\right)^3=0\)

\(\Leftrightarrow\sqrt[3]{3x}=\sqrt[3]{x+2}\)

\(\Leftrightarrow3x=x+2\)

\(\Leftrightarrow x=1\)

Vậy pt có một nghiệm duy nhất x = 1 ~!~"

19 tháng 10 2017

tại s có dòng thứ 2 từ trên xuống

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!