\(2000x^4+x^4\sqrt{2000+x^2}+x^2=1999\cdot2000\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

4 tháng 3 2018

hello bạn

đặt \(\sqrt{x+y-4}=a;\sqrt{x-y+4}=b;\sqrt{-x+y+4}=c\left(a;b;c\ge0\right)\)

pt trở thành a+b+c=\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

bunhia có VT\(\le\)VP 

dấu = xảy ra <=>a=b=c<=>x=y=4

11 tháng 9 2016

pt <=>\(2\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}=16-2x^2\)

\(\Leftrightarrow\sqrt{x^2-4+\sqrt{x^2-4}+4}=16-x^2\)

\(\Leftrightarrow\sqrt{x^2-4}+2=16-2x^2\)

đặt \(\sqrt{x^2-4}=t\)

\(pt\Leftrightarrow t+2=16-t^2\)

giải ra đc t =1,5 hoặc t=-2

từ đó => x

11 tháng 9 2016

hoi kho day

23 tháng 10 2018

\(x^4+\sqrt{x^2+1999}=1999\)

\(\Leftrightarrow4x^4+4x^2+1=4\left(x^2+1999\right)-4\sqrt{x^2+1999}+1\)

\(\Leftrightarrow\left(2x^2+1\right)^2=\left(2\sqrt{x^2+1999}-1\right)^2\)

TH1:Đặt \(t=x^2\left(t>0\right)\)

\(\Leftrightarrow2t+1=2\sqrt{t+1999}-1\)

\(\Leftrightarrow t+1=\sqrt{t+1999}\)(tiếp theo bình phương rồi giải)

TH còn lại tương tự