\(\sqrt{x+3}=x-3\)

2) \(\sqrt{4x^2+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

1, \(\sqrt{x+3}=x-3\)ĐK : \(x\ge-3\)

bình phương 2 vế phương trình có dạng : \(x+3=x^2-6x+9\)

\(\Leftrightarrow x^2-7x+6=0\Leftrightarrow x^2-x-6x+6=0\)

\(\Leftrightarrow x\left(x-1\right)-6\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\Leftrightarrow x=1;x=6\)

2, \(\sqrt{4x^2+4x+1}=2-x\Leftrightarrow\sqrt{\left(2x+1\right)^2}=2-x\)

\(\Leftrightarrow\left|2x+1\right|=2-x\)

TH1 : \(2x+1=2-x\Leftrightarrow3x=1\Leftrightarrow x=\frac{1}{3}\)

TH2 : \(2x+1=x-2\Leftrightarrow x=-3\)

VC
28 tháng 7 2021

1) ĐKXĐ : \(x\ge-3\)

 \(\sqrt{x+3}=x-3\Leftrightarrow x+3=\left(x-3\right)^2=x^2-6x+9\)

\(\Leftrightarrow x^2-7x+6=0\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=6\left(TM\right)\end{cases}}}\)

Vậy \(S=\left\{1;6\right\}\)

2) \(\sqrt{4x^2+4x+1}=2-x\Leftrightarrow\sqrt{\left(2x+1\right)^2}=2-x\)

\(\Leftrightarrow|2x+1|=2-x\Leftrightarrow\orbr{\begin{cases}2x+1=2-x\\2x+1=x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=3\end{cases}}}\)

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

4 tháng 10 2016

Mình hướng dẫn nhé :)

  • Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)

Xét trường hợp để tìm nghiệm nhé :)

  • \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
  • \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
  • \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
  • \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
16 tháng 7 2019

\(a,\sqrt{4x^2-20x+25}+2x=5\)

    \(\Rightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)

  \(\Rightarrow4x=10\Rightarrow x=\frac{5}{2}\)

\(b,\sqrt{1-12x+36x^2}=5\)

  \(\Rightarrow6x-1=5\)

 \(\Rightarrow6x=6\Rightarrow x=1\) 

\(c,\sqrt{x^2+x}=x\)

  \(\Rightarrow x^2+x=x^2\)

\(\Rightarrow x=0\)   

16 tháng 7 2019

\(c,\Rightarrow\left(x-2\right)^2-1=\left(x-2\right)^2\)

\(\Rightarrow-1=0\) (vô lý)

=> PT vô nghiệm 

23 tháng 7 2019

a) \(\sqrt{x^2-6x+9}+x=11\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}+x=11\)

\(\Rightarrow x-3+x=11\) 

\(\Rightarrow2x=14\Rightarrow x=7\) 

Vậy........

b) \(\sqrt{3x^2-4x+3}=1-2x\)

\(3x^2-4x+3=1-4x+4x^2\) 

\(3x^2-4x^2-4x+4x=-2\) 

\(-x^2=-2\) 

\(2=x^2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\) 

Vậy.........

23 tháng 7 2019

d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\) 

\(\Rightarrow2x-1=x-3\) 

\(\Rightarrow x=1-3\) 

\(\Rightarrow x=-2\) 

Vậy  x=-2

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)

21 tháng 9 2017

aを見つける= 175度はどれくらい尋ねる

6 tháng 2 2020

Cửa hàng đã bán hết 618kg bí đỏ và 619kg cà rốt. Bí đỏ có giá bán 10 nghìn đồng 1kg và cà rốt có giá bán là 9 nghìn đồng 1kg. Hỏi cửa hàng bán bí đỏ được bao nhiêu tiền và bán cà rốt được bao nhiêu tiền?

7 tháng 9 2017

1/ \(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\)

Đặt \(x^2=a\ge0\) thì ta có:

\(\sqrt{5-a^3}=\sqrt[3]{3a^2-2}+1\)

\(\Leftrightarrow\left(\sqrt[3]{3a^2-2}-1\right)+\left(2-\sqrt{5-a^3}\right)=0\)

\(\Leftrightarrow\frac{3a^2-3}{\sqrt[3]{\left(3a^2-2\right)^2}+\sqrt[3]{\left(3a^2-2\right)}+1}+\frac{a^3-1}{2+\sqrt{5-a^3}}=0\)

\(\Leftrightarrow\left(a-1\right)\left(\frac{3\left(a+1\right)}{\sqrt[3]{\left(3a^2-2\right)^2}+\sqrt[3]{\left(3a^2-2\right)}+1}+\frac{\left(a^2+a+1\right)}{2+\sqrt{5-a^3}}\right)=0\)

\(\Leftrightarrow a-1=0\)

\(\Rightarrow x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

7 tháng 9 2017

2/ \(\sqrt{4x^2-1}+\sqrt{4x-1}=1\)

Điều kiện: \(\hept{\begin{cases}4x^2-1\ge0\\4x-1\ge0\end{cases}}\)

\(\Leftrightarrow x\ge\frac{1}{2}\)

Ta có: 

\(VT=\sqrt{4x^2-1}+\sqrt{4x-1}\)

\(\ge\sqrt{4.\left(\frac{1}{2}\right)^2-1}+\sqrt{4.\frac{1}{2}-1}=0+1=1=VP\)

Dấu = xảy ra khi \(x=\frac{1}{2}\)