K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2021

\(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}=-2\left(1\right)\)

\(ĐKXĐ:x\ne-2\)

\(\left(1\right)\Leftrightarrow\left(\frac{x}{x^2+4x+4}+1\right)+\left(\frac{5x}{x^2+4}+1\right)=0\)

\(\Leftrightarrow\frac{x^2+5x+4}{x^2+4x+4}+\frac{x^2+5x+4}{x^2+4}=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(\frac{1}{x^2+4x+4}+\frac{1}{x^2+4}\right)=0\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow x^2+x+4x+4=0\)

\(\Leftrightarrow x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=-4\end{cases}\left(TMĐKXĐ\right)}}\)

 
16 tháng 3 2020

\(x^4+4x^3+5x^2-4x+4=0\)

\(\Leftrightarrow x^4+4x^3+4x^2+x^2-4x+4=0\)

\(\Leftrightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)

Vì \(x^2\left(x+2\right)^2\ge0\forall x;\left(x-2^2\right)\ge0\forall x\)

\(\Rightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2\ge0\)

Mà \(x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x\left(x+2\right)=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x=2\end{cases}}\)

Mà ko cùng một lúc tồn tại 2 giá trị của x

\(\Rightarrow\)Phương trình vô nghiệm

Vậy ...

25 tháng 5 2020

ĐK: x khác -2

Với x = 0 không phải là nghiệm của phương trình 

Với x khác 0 ta có: 

\(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}+2=0\)

<=> \(\frac{1}{\left(x+\frac{4}{x}\right)+4}+\frac{5}{x+\frac{4}{x}}+2=0\)

Đặt: \(x+\frac{4}{x}=t\)

ta có phương trình: \(\frac{1}{t+4}+\frac{5}{t}+2=0\)

<=> \(t+5t+20+2t^2+8t=0\)

<=> \(t^2+7t+10=0\)

<=> \(\left(t^2+2t\right)+\left(5t+10\right)=0\)

<=> \(\left(t+2\right)\left(t+5\right)=0\)

<=> \(\orbr{\begin{cases}t=-2\\t=-5\end{cases}}\)

Với t = - 2 ta có: \(x+\frac{4}{x}=-2\Leftrightarrow x^2+2x+4=0\Leftrightarrow\left(x+1\right)^2+3=0\) vô nghiệm 

Với t  = - 5 ta có: \(x+\frac{4}{x}=-5\Leftrightarrow x^2+5x+4=0\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

<=> x = - 1 hoặc x = -4 ( thỏa mãn ) 

Kết luận:...

Cách khác cô Chi !

ĐKXĐ  : \(x\ne-2\)

\(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}+2=0\)

\(\frac{x\left(x^2+4\right)}{\left(x^2+4x+4\right)\left(x^2+4\right)}+\frac{5x\left(x^2+4x+4\right)}{\left(x^2+4\right)\left(x^2+4x+4\right)}+\frac{2\left(x^2+4x+4\right)\left(x^2+4\right)}{\left(x^2+4x+4\right)\left(x^2+4\right)}=0\)

\(x\left(x^2+4\right)+5x\left(x^2+4x+4\right)+2\left(x^2+4x+4\right)\left(x^2+4\right)=0\)

\(14x^3+56x+36x^2+2x^4+32=0\)

\(2\left(x^3+6x^2+12x+16\right)\left(x+1\right)=0\)

\(2\left(x^2+2x+4\right)\left(x+4\right)\left(x+1\right)=0\)

TH1 : \(2\ne0\)

TH2 : \(x^2+2x+4=0\)

Ta có : \(2^2-4.1.4=4-16=-12< 0\)(vô nghiệm)

TH3 : \(x+1=0\Leftrightarrow x=-1\)

TH4 : \(x+4=0\Leftrightarrow x=-4\)

9 tháng 5 2021

a,\(2x+5=2-x\)

\(< =>2x+x+5-2=0\)

\(< =>3x+3=0\)

\(< =>x=-1\)

b, \(/x-7/=2x+3\)

Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)

\(< =>2x-x+3+7=0\)

\(< =>x+10=0< =>x=-10\)( lọai )

Với \(x< 7\)thì \(PT< =>7-x=2x+3\)

\(< =>2x+x+3-7=0\)

\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )

9 tháng 5 2021

c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)

\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(< =>4x^2-8x+4x-6=x^2-x-6\)

\(< =>4x^2-x^2-4x+x-6+6=0\)

\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)

12 tháng 11 2019

Bạn cần ghi đề rõ hơn nhé

ko bt là x/(x^2+4x+4)   +    5x/(x^2+4) hay là x/(x^2)+4x+4   +    5x/(x^2)+4

20 tháng 3 2020

Ta có: 5x + 3x2 = 0 

<=> x(3x + 5) = 0

<=> \(\orbr{\begin{cases}x=0\\3x+5=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=-\frac{5}{3}\end{cases}}\) Vậy S = {0; -5/3)

5(x2 - 2x) = (3 + 5x)(x - 1)

<=> 5x2 - 10x = 5x2 - 2x - 3

<=> 5x2 - 10x - 5x2 + 2x = -3

<=> -8x = -3

<=> x = 3/8 Vậy S = {3/8}

(4x + 3)2 = 4(x - 1)2

<=> (4x + 3)2 - (2x - 2)2 = 0

<=> (4x + 3 - 2x + 2)(4x +3 + 2x - 2) = 0

<=> (2x + 5)(6x + 1) = 0

<=> \(\orbr{\begin{cases}2x+5=0\\6x+1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\)  Vậy S = {-5/3; -1/6}

20 tháng 3 2020

a) 5x + 3.x2 = 0

<=>x . ( 5 + 3x ) = 0

<=> \(\orbr{\begin{cases}x=0\\5+3.x=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0\\z=-\frac{5}{3}\end{cases}}\)

Nghiệm cuối cùng là :{ 0;\(-\frac{5}{3}\)}

b) 5.( x2 - 2.x ) = ( 3 + 5.x ) . ( x- 1 )

<=>5.x2 - 10.x = 3.x -3 + 5.x2 - 5.x

<=> -10.x         = 3.x - 3-5.x 

<=> -10.x        = -2.x - 3

<=> -8.x          = -3

<=> x              = \(\frac{3}{8}\)

Vậy x = \(\frac{3}{8}\)

c) ( 4x + 3 )2 = 4. ( x - 1 )2 

<=> 16.x2 + 24.x + 9 = 4.( x2 -2.x + 1 )

<=> 16.x2+24.x + 9  = 4.x2 -8.x + 4

<=> 16.x2 +24.x + 9 -4.x2 + 8.x - 4= 0

<=> 12.x2 + 32.x + 5  = 0

<=> 12.x2 + 30.x + 2.x + 5 = 0

<=> 6.x . ( 2.x + 5 ) + 2.x + 5 =0

<=> ( 2.x + 5 ) . ( 6.x + 1 ) =0

<=> \(\orbr{\begin{cases}2.x+5=0\\6.x+1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\)

Nghiệm cuối cùng là : { \(-\frac{5}{2};-\frac{1}{6}\)}

20 tháng 3 2020

mình ko biết,sorry

20 tháng 3 2020

thỏ_con

Ko biết thì nói làm gì bạn

Công nhận bạn rảnh dễ sợ luôn

@@@

a, Ta có: \(\left(x-1\right)^3+\left(x-2\right)^3+\left(3-2x\right)^3=0\)

\(\Leftrightarrow\left(x-1+x-2\right)^3-3\left(x-1\right)\left(x-2\right)\left(x-1+x-2\right)+\left(3-2x\right)^3=0\)

\(\Leftrightarrow\left(2x-3\right)^3+\left(3-2x\right)^3-3\left(x-1\right)\left(x-2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3+3-2x\right)^3-3\left(2x-3\right)\left(3-2x\right)\left(2x-3+3-2x\right)+3\left(x-1\right)\left(x-2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow3\left(x-1\right)\left(x-2\right)\left(2x-3\right)=0\)

\(x=1,2,\frac{3}{2}\)