K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 x(x-1)(x+4)(x+5)=84

<=> (x2+4x)(x2+4x-5)=84

Đặt x2+4x=a

=> a(a-5)=84

<=> a2-5a-84=0

<=>(a+7)(a-12)=0

\(\Leftrightarrow\orbr{\begin{cases}a=-7\\a=12\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2+4x+7=0\left(vo.nghiem\right)\\x^2+4x-12=0\end{cases}}\)

Đến đây đơn giản rồi nhé :))

10 tháng 2 2020

\(x\left(x-1\right)\left(x+4\right)\left(x+5\right)=84\)

\(\Leftrightarrow x\left(x+4\right)\left(x-1\right)\left(x+5\right)=84\)

\(\Leftrightarrow\left(x^2+4x\right)\left(x^2+4x-5\right)=84\)

Đặt \(x^2+4x=u\)

Phương trình trở thành \(u\left(u-5\right)=84\)

\(\Leftrightarrow u^2-5u+\frac{25}{4}=\frac{361}{4}\)

\(\Leftrightarrow\left(u-\frac{5}{2}\right)^2=\frac{361}{4}\)

\(\Rightarrow\orbr{\begin{cases}u-\frac{5}{2}=\sqrt{\frac{361}{4}}\\u-\frac{5}{2}=-\sqrt{\frac{361}{4}}\end{cases}}\Rightarrow\orbr{\begin{cases}u=12\\u=-7\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2+4x=12\\x^2+4x=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+2\right)^2=16\\\left(x+2\right)^2=-3\left(L\right)\end{cases}}\)

\(\Rightarrow x\in\left\{2;-6\right\}\)

Vậy pt có 2 nghiệm là 2 và -6

a: \(\Leftrightarrow5\sqrt{x+3}-4\sqrt{x+3}=3\sqrt{x-2}-3\sqrt{x-2}+2\)

\(\Leftrightarrow\sqrt{x+3}=2\)

=>x+3=4

hay x=1

c: \(\Leftrightarrow\left(x^2+4x\right)\left(x^2+4x-5\right)=84\)

\(\Leftrightarrow\left(x^2+4x\right)^2-5\left(x^2+4x\right)-84=0\)

\(\Leftrightarrow\left(x^2+4x\right)^2-12\left(x^2+4x\right)+7\left(x^2+4x\right)-84=0\)

\(\Leftrightarrow x^2+4x-12=0\)

=>(x+6)(x-2)=0

=>x=-6 hoặc x=2

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

19 tháng 2 2021

tự kết luận nhé 

a,\(\left(x^2-2x+1\right)-2\left(x-1\right)+1=0\)

\(\Leftrightarrow\left(x-1\right)^2-2\left(x-1\right)+1=0\)

\(\Leftrightarrow\left(x-1-1\right)^2=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(\left(x-3\right)\left(x+4\right)=\left(x-3\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4-x-5\right)=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

\(x+4-x-5\ne0\Leftrightarrow0x\ne1\)

19 tháng 2 2021

a) \(\left(x^2-2x+1\right)-2\left(x-1\right)+1=0\)

\(\Leftrightarrow\left(x-1\right)^2-2\left(x-1\right)+1=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Rightarrow x=2\)

b) \(\left(x-3\right)\left(x+4\right)=\left(x-3\right)\left(x+5\right)\)

\(\Leftrightarrow x-3=0\)

\(\Rightarrow x=3\)

11 tháng 6 2019

Ta có :

            \(5\sqrt{x}-1-\sqrt{x}+7=3x-4\)

     \(\Leftrightarrow4\sqrt{x}=3x-10\)

     \(\Leftrightarrow\left(4\sqrt{x}\right)^2=\left(3x-10\right)^2\)

     \(\Leftrightarrow16x=9x^2-60x+100\)

     \(\Leftrightarrow9x^2-76x+100=0\)

\(\Delta=\left(-76\right)^2-4.9.100=2176>0\)

Nên phương trình có 2 nghiệm phân biệt là :

\(x_1=\frac{76-\sqrt{2176}}{18}=\frac{38-4\sqrt{34}}{9}\)

\(x_2=\frac{76+\sqrt{2176}}{18}=\frac{38+4\sqrt{34}}{9}\)

24 tháng 12 2017

ta có Pt

<=> \(\frac{5}{x-4\sqrt{x}+5}-x+4\sqrt{x}-5+4=0\)

đặt \(x-4\sqrt{x}+5=a\Rightarrow PT\Leftrightarrow\frac{5}{a}-a+4=0\)

<=>\(5-a^2+4a=0\Leftrightarrow a^2-4a-5=0\Leftrightarrow\left(a-5\right)\left(a+1\right)=0\)

<=>a=5\(\Leftrightarrow x-4\sqrt{x}+5=5\Leftrightarrow x-4\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=16\end{cases}}\)

18 tháng 5 2021

\(2x^2+3x-5=0\)

\(< =>2x^2-2x+5x-5=0\)

\(< =>2x\left(x-1\right)+5\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(2x+5\right)=0\)

\(< =>\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

18 tháng 5 2021

\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}}\)

\(< =>\hept{\begin{cases}-3x-6y=-3\\-3x-6y+10y=-18\end{cases}}\)

\(< =>\hept{\begin{cases}x+2y=1\\10y=-18+3=-15\end{cases}}\)

\(< =>\hept{\begin{cases}x+2y=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x-3=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}}\)