\(x\sqrt{x+1}+\sqrt{3-x}=2\sqrt{x^2+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

C,         Ta có : B = \(\frac{\sqrt{x}}{\sqrt{x}-2}\)   Nên pt tương đương :    \(\sqrt{x}+2\sqrt{x}=x-\sqrt{7\left(x-2\right)}+7\)

                                                                              \(\Leftrightarrow3\sqrt{x}=x-\sqrt{7\left(x-2\right)}+7\)

                                                                              \(\Leftrightarrow6\sqrt{x}=2x-2\sqrt{7\left(x-2\right)}+14\)

                                                                              \(\Leftrightarrow6\sqrt{x}-x-9=x-2-2\sqrt{7\left(x-2\right)}+7\)   

                                                                               \(\Leftrightarrow-\left(\sqrt{x}-3\right)^2=\left(\sqrt{x-2}-\sqrt{7}\right)^2\)

              Vì :       \(VT\le0\)và    \(VP\ge0\)

=>   PT có nghiệm khi  \(VT=VP=0\)

=>    \(\hept{\begin{cases}\sqrt{x}-3=0\\\sqrt{x-2}-\sqrt{7}=0\end{cases}\Leftrightarrow x=9\left(tm\right)}\)

Vậy...................

Bài 3: 2b,      Để PT (*) có 2 nghiệm phân biệt thì :       \(\Delta>0\)  hay   \(\left(-20\right)^2>4\left(m+5\right)\Leftrightarrow m< 95\)

                    Có :   \(\hept{\begin{cases}x_1+x_2=20\\x_1.x_2=m+5< 100\end{cases}}\) Với x1 và x2 là No của PT (*)

Mà x1 và x2  là các số nguyên tố    =>  Dễ dàng tìm được   ( x1;x2 )  =  ( 17;3 ) ; ( 13; 7 )

       + Với    ( x1 ; x2 )  =  ( 17; 3 )  thì m = 46   (t/m)

       + Với    ( x1 ; x2 ) = ( 13; 7 ) thì m = 86   (t/m)

    Vậy với m = 46 hoặc m = 86 thì PT có 2 No phân biệt là SNT

                      

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

18 tháng 12 2016

Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\left(a\ge0\right)\\\sqrt{x-2}=b\left(b\ge0\right)\end{cases}}\)

\(\Rightarrow a^2-b^2=3\)

\(1PT\Leftrightarrow\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)

 \(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

 Tới đây tự làm tiếp nhé

18 tháng 12 2016

có ai chơi ngọc rồng online ko

22 tháng 11 2016

d/ \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{cases}\Rightarrow a^3-b^3=2}\)

\(\Rightarrow\hept{\begin{cases}a^3-b^3=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a^2+b^2+ab\right)=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=2\\b^2+2b+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=1\\\sqrt[3]{x-1}=-1\end{cases}\Leftrightarrow}x=0}\)

22 tháng 11 2016

bài b , lập phương lên 

bài c , đặt cái căn đưa về hệ 

mới nhìn dc làm dc liền thế thui

13 tháng 8 2017

1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v

4 tháng 10 2016

Mình hướng dẫn nhé :)

  • Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)

Xét trường hợp để tìm nghiệm nhé :)

  • \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
  • \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
  • \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
  • \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.