\(x^4+\sqrt{x^2+2015}=2015\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2015

ai giups tui di

 

5 tháng 11 2016

\(\sqrt{x}+\sqrt{2015-y}=\sqrt{2015}\Leftrightarrow\left(\sqrt{x}+\sqrt{2015-y}\right)^2=2015\)

\(\Leftrightarrow x-y+2\sqrt{x}.\sqrt{2015-y}=0\Leftrightarrow4x.\left(2015-y\right)=\left(y-x\right)^2\)

\(\Leftrightarrow x^2+y^2-2xy=2015.4x-4xy\Leftrightarrow\left(x+y\right)^2=2015.4x\)

Tương tự : \(\sqrt{2015-x}+\sqrt{y}=\sqrt{2015}\Leftrightarrow\left(x+y\right)^2=2015.4y\)

Từ đó suy ra x = y 

Tới đây bạn tự làm nhé :)

16 tháng 5 2015

help me !!!!!!!!!!!!!!!!!

 

18 tháng 9 2016

⊰║۩๖ۣۜNỆN۩║⊱

k đi m.n :))))

3 tháng 7 2016

\(\sqrt{\left(x-2015\right)^{14}}+\sqrt{\left(x-2016\right)^{10}}=1 \)
\(\Leftrightarrow\left(x-2015\right)^7+\left(x-2016\right)^5=1\)
=> x=2015 hoặc x=2016
đoán thế

3 tháng 7 2016

\(\sqrt{2005-\sqrt{ }2004}voi\sqrt{2004-\sqrt{ }2003}\)

25 tháng 9 2017

câu1) 

ta có ĐK...

xét x=0 là nghiệm, 

xét x>0 thì vế trái  <2

xét x<0 thì vế trái >2 

vậy x=0

26 tháng 9 2017

câu cuối đc sử dụng máy tính ko

NV
13 tháng 6 2020

c/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

13 tháng 6 2020

aaa là \(\sqrt{x+3}\) cháu gõ lộn

19 tháng 3 2020

ĐKXĐ : \(x\ge1\)

- Ta có : \(x^4+4x^2=2x-2015\sqrt{x-1}+2\)

=> \(x^4+4x^2-2x-2=-2015\sqrt{x-1}\)

=> \(\left(x^2\right)^2+4x^2+4-2x-6=-2015\sqrt{x-1}\)

=> \(\left(x^2+2\right)^2-2\left(x+3\right)=-2015\sqrt{x-1}\)

- Gỉa sử \(-2\left(x+3\right)=0\)

=> \(\left(x^2+2\right)^2=-2015\sqrt{x-1}\) ( vô lý )

- Gỉa sử \(-2\left(x+3\right)>0\)

Mà ta thấy \(\left(x^2+2\right)^2>0\)

=> \(\left(x^2+2\right)^2-2\left(x+3\right)>0\)

\(-2015\sqrt{x-1}< 0\)

=> \(-2\left(x+3\right)>0\) ( vô lý )

- Gỉa sử \(-2\left(x+3\right)< 0\)

=> \(x>-3\)

Mà để phương trình được xác định thì \(x\ge1\)

Vậy hệ phương trình vô nghiệm .