\(x^4+3x^3+6x+4=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2022

Khi x = 0 không là nghiệm của phương trình  x4+3x3+6x+4=0x4+3x3+6x+4=0

Do đó x≠0x≠0 , chia 2 vế phương trình cho x2x2 ta được:

x2+3x+6x+4x2=0x2+3x+6x+4x2=0  

⇔(x2+4x2)+(3x+6x)=0⇔x2+4x2+3x+6x=0  

⇔(x2+4x2)+3(x+2x)=0⇔x2+4x2+3x+2x=0 

Đặt x+2x=t⇒x2+4x2=t2−4x+2x=t⇒x2+4x2=t2-4 , khi đó phương trình trở thành:

t2+3t−4=0t2+3t-4=0  

⇔(t−1)(t+4)=0⇔t-1t+4=0  

⇔⇔[t=1t=−4t=1t=-4  

+ Với t = 1, khi đó

 x+2x=1x+2x=1

⇔x2−x+2=0⇔x2-x+2=0  

⇔(x−12)2+74=0⇔x-122+74=0  

⇒⇒  phương trình vô nghiệm

+ Với t = -4, khi đó:

x+2x=−4x+2x=-4 

⇔x2+4x+2=0⇔x2+4x+2=0 

⇔(x+2)2−2=0⇔x+22-2=0 

⇔(x+2)2=2⇔x+22=2 

⇔⇔[x+2=√2x+2=−√2x+2=2x+2=-2

⇔⇔[x=√2−2x=−√2−2x=2-2x=-2-2

Vậy   S={−2+√2;−2−√2}S=-2+2;-2-2

x4−3x2+6x−4=0x4-3x2+6x-4=0  

⇔x4−x3−2(x3−1)+6(x−1)=0⇔x4-x3-2x3-1+6x-1=0  

⇔x3(x−1)−2(x−1)(x2+x+1)+6(x−1)=0⇔x3x-1-2x-1x2+x+1+6x-1=0  

 ⇔(x−1)(x3−2x2−2x−2+6)=0⇔x-1x3-2x2-2x-2+6=0 

⇔(x−1)(x3−2x2−2x+4)=0⇔x-1x3-2x2-2x+4=0  

⇔(x−1)[x2(x−2)−2(x−2)]=0⇔x-1x2x-2-2x-2=0  

⇔(x−1)(x−2)(x2−2)=0⇔x-1x-2x2-2=0  

⇔(x−1)(x−2)(x−√2)(x+√2)=0⇔x-1x-2x-2x+2=0  

⇔⇔ ⎡⎢⎣x=1x=2x=±√2x=1x=2x=±2  

Vậy   S={1;2;√2;−√2}S=1;2;2;-2

 :3

4 tháng 2 2022

S=1;2;-1;-2 nha

HT

@@@@@@@@@@@@@@@@@22

20 tháng 6 2017

b)\(3x^3+6x^2-75x-150=0\Leftrightarrow3\left(x^3+2x^2-25x-50\right)=0\Leftrightarrow x^3+2x^2-25x-50=0\)

<=>\(x^2\left(x+2\right)-25\left(x+2\right)=0\Leftrightarrow\left(x^2-25\right)\left(x+2\right)=0\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+2\right)=0\)

<=>x-5=0 hoặc x+5=0 hoặc x+2=0<=>x=5 hoặc x=-5 hoặc x=-2

c)\(2x^5-3x^4+6x^3-8x^2+3=0\Leftrightarrow2x^5+x^4-4x^4-2x^3+8x^3+4x^2-12x^2+3=0\)

<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(4x^2-1\right)=0\)

<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(2x-1\right)\left(2x+1\right)=0\)

<=>\(\left(2x+1\right)\left(x^4-2x^3+4x^2-6x+3\right)=0\)

<=>\(\left(2x+1\right)\left(x^4-2x^3+x^2+3x^2-6x+3\right)=0\)

<=>\(\left(2x+1\right)\left[x^2\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)\right]=0\)

<=>\(\left(2x+1\right)\left(x^2+3\right)\left(x^2-2x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(x^2+3\right)\left(x-1\right)^2=0\)

Vì \(x^2\ge0\Rightarrow x^2+3\ge3>0\Rightarrow\orbr{\begin{cases}2x+1=0\\\left(x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)

20 tháng 6 2017

a) 2x3 - x2 - 8x + 4 = 0

x2.(2x - 1) - 4.(2x - 1) = 0

(x2 - 4)(2x - 1) = 0

\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=\frac{1}{2}\end{cases}}\)

Với x2 = 4

=> x = 2 hoặc x = -2

=> x = {-2 ; 2 ; \(\frac{1}{2}\))

3 tháng 4 2018

a) \(|2x+1|=|x-3|\)

\(\Leftrightarrow|2x+1|-|x-3|=0\)

Lập bảng xét dấu :

x \(\frac{-1}{2}\) 3 
2x+1-0+\(|\)+
x-3-\(|\)-0+

Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)

                                    \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow-2x-1-3+x=0\)

\(\Leftrightarrow-x=4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

Nếu  \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)

                                               \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x+1-3+x=0\)

\(\Leftrightarrow3x-2=0\)

\(x=\frac{2}{3}\left(tm\right)\)

Nếu  \(x>3\) thì \(|2x+1|=2x+1\) 

                               \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)

\(\Leftrightarrow2x+1-x+3=0\)

\(\Leftrightarrow x=-4\) ( loại )

3 tháng 4 2018

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)

Mà \(\left(x^2+1\right)^2\ge0\forall x\)

      \(\left(x-3\right)^2\ge0\forall x\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)

Lại có \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2=-1\) ( vô lí )

Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)

17 tháng 2 2020

À,CHỈ CÓ 1 SỐ "0" THÔI NHÉ!

17 tháng 2 2020

\(=>\frac{8}{2x^2-6x+2}-\frac{3}{2x^2-6x+2}=-1\)

\(=>\frac{5}{2x^2-6x+2}=-1\)

\(=>2x^2-6x+2=-5\)

\(=>2x^2-6x=-7\)

\(=>x.\left(2x-6\right)=-7\)

\(=>2x-6=-\frac{7}{x}\)

\(=>2x=\frac{-7+6x}{x}\)

\(=>3x=-7+6x\)

\(=>-7=-3x\)

\(=>x=\frac{-7}{-3}=\frac{7}{3}\)

E ms lớp 7 nên giải hơi dài thông cảm ạ :>

22 tháng 4 2019

a)

voi x=0 ta thay 0 o phai la no pt

voi x<>0 chia ca 2 ve cho x^2 ta dc

x^2-3x+6-3/x+1/x^2=0

(x^2+1/x^2)-3(x+1/x)+6=0 dat a=x+1/x ta co (x+1/x)^2=a^2=>x^2+1/x^2=a^2-2

=>a^2-3a+4=0=>pt vo no :(

18 tháng 5 2017

giải đc sao pn dễ mk

19 tháng 5 2017

chẳng ai giải, thôi mình giải vậy!

a) Đặt \(y=x^2+4x+8\),phương trình có dạng:

\(t^2+3x\cdot t+2x^2=0\)

\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)

\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}

b) nhân 2 vế của phương trình với 12 ta được:

\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)

Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)

giải tiếp ra ta sẽ được S={-2/3;-5/3}

c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)

S={3;5}

d)s={1}

e) S={1;-2;-1/2}

f) phương trình vô nghiệm

giúp tôi với

23 tháng 1 2020

1) 2x4 - 9x3 + 14x2 - 9x + 2 = 0

<=> (2x4 - 4x3) - (5x3 - 10x2) + (4x2 - 8x) - (x - 2) = 0

<=> 2x3(x - 2) - 5x2(x - 2) + 4x(x - 2) - (x - 2) = 0

<=> (2x3 - 5x2 + 4x - 1)(x - 2) = 0

<=> [(2x3 - 2x2) - (3x2 - 3x) + (x - 1)](x - 2) = 0

<=> [2x2(x - 1) - 3x(x - 1) + (x - 1)](x - 2) = 0

<=> (2x2 - 2x - x + 1)(x - 1)(x - 2) = 0

<=> (2x - 1)(x - 1)2(x - 2) = 0

<=> 2x - 1=0

hoặc x - 1 = 0

hoặc x - 2 = 0

<=> x = 1/2

hoặc x = 1

hoặc x = 2

Vậy S = {1/2; 1; 2}

11 tháng 3 2020

\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\)

<=> \(\frac{4}{\left(x-1\right)\left(x-2\right)}-\frac{3}{2x^2-6x+1}+1=0\)

<=> 4(2x2 - 6x + 1) - 3(x - 1)(x - 2) + (x - 1)(x - 2)(2x2 - 6x + 1) = 0

<=> 28x2 - 30x + 2x4 - 12x= 0

<=> 2x(14x - 15 + x2 - 6x2) = 0

<=> 2x(x2 - 3x + 5)(x - 3) = 0

vì x- 3x + 5 khác 0 nên:

<=> 2x = 0 hoặc x - 3 = 0

<=> x = 0 hoặc x = 3

\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\)

\(\Leftrightarrow\frac{2x^4-12x^3+28x^2-30x}{2x^4-12x^3+28x^2-15x+2}=0\)

\(\Leftrightarrow2x^4-12x^3+28x^2-30x=0\)

\(\Leftrightarrow2\left(x-3\right)\left(x^2-3x+5\right)=0\)

mà  \(x^2-3x+5\) khác 0 

\(\Rightarrow\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

5 tháng 1 2020

có thể tách từng mẫu ra đi

14 tháng 1 2020

Tách mẫu \(2x^2-6x+1\) ko đc