K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(x^4=24x+32\)

\(\Leftrightarrow x^4+4x^2+4=24x+32+4x^2+4\)

\(\Leftrightarrow\left(x^2+2\right)^2=4x^2+24x+36\)

\(\Leftrightarrow\left(x^2+2\right)^2=4\left(x+3\right)^2\)

\(\Leftrightarrow\left(x^2+2\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow\left(x^2+2\right)^2-\left(2x+6\right)^2=0\)

\(\Leftrightarrow\left(x^2+2-2x-6\right)\left(x^2+2+2x+6\right)=0\)

\(\Leftrightarrow\left(x^2-2x-4\right)\left(x^2+2x+8\right)=0\)(1)

Ta có: \(x^2+2x+8\)

\(=x^2+2x+1+7\)

\(=\left(x+1\right)^2+7\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+7\ge7\forall x\)

hay \(x^2+2x+8>0\forall x\)(2)

Từ (1) và (2) suy ra \(x^2-2x-4=0\)

\(\Leftrightarrow x^2-2x+1-5=0\)

\(\Leftrightarrow\left(x-1\right)^2-5=0\)

\(\Leftrightarrow\left(x-1\right)^2=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{5}\\x-1=-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+1\\x=-\sqrt{5}+1\end{matrix}\right.\)

Vậy: \(x\in\left\{\sqrt{5}+1;-\sqrt{5}+1\right\}\)

1 tháng 4 2020

\(\Leftrightarrow x^4+4x^2+4=4\left(x^2+6x+9\right)\)

\(\Leftrightarrow\left(x^2+2\right)^2=4\left(x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2=2\left(x+3\right)\\x^2+2=-2\left(x+3\right)\end{matrix}\right.\)..

Giải vô tư

7 tháng 3 2018

Bài giải

 Cộng cả 2 vế với 4x^2+4 
>>x^4+4x^2+4=4x^2+24x+36 
>>(x^2+2)^2=4(x+3)^2 
>>x^2+2=2(x+3)(1) hoặc x^2+2=-2(x+3)(2) 
(1)>>x^2-2x-4=0>>x=1(+-)căn 5 
(2)>>x^2+2x+8=0(vô nghiệm)

~Hok tốt~

7 tháng 3 2018

Cộng cả 2 vế với 4x^2+4 
>>x^4+4x^2+4=4x^2+24x+36 
>>(x^2+2)^2=4(x+3)^2 
>>x^2+2=2(x+3)(1) hoặc x^2+2=-2(x+3)(2) 
(1)>>x^2-2x-4=0>>x=1(+-)căn 5 
(2)>>x^2+2x+8=0(vô nghiệm

30 tháng 7 2017

(x2 + 5x + 6)(x2 + 9x + 20) = 24

<=> (x + 2)(x + 3)(x + 4)(x + 5) - 24 = 0

<=> (x2 + 7x + 10)(x2 + 7x + 12) - 24 = 0 (1)

Đặt x2 + 7x + 11 = t, ta có:

(1) <=> (t - 1)(t + 1) - 24 = 0

<=> t2 - 1 - 24 = 0

<=> (t - 5)(t + 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}t-5=0\\t+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+7x+11-5=0\\x^2+7x+11+5=0\end{matrix}\right.\)

<=> (x + 1)(x + 6) = 0 (vì \(x^2+7x+16\ge\dfrac{15}{4}>0\))

<=> x = - 1 hoặc x = - 6

~ ~ ~ ~ ~

x4 - 24x = 32

<=> x4 - 24x - 32 = 0

<=> (x2 - 2x - 4)(x2 + 2x + 8) = 0

<=> \(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)=0\) (vì \(x^2+2x+8\ge7>0\))

\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)

2 tháng 3 2018

1) \(x^4-8x^3+11x^2+8x-12=0\)

\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-6\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-2=0\\x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=6\end{matrix}\right.\)

Vậy ...

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Câu 1:

Đặt \(x+1=a\). Khi đó \(x+3=a+2; x-1=a-2\).

PT đã cho tương đương với:

\((a+2)^4+(a-2)^4=626\)

\(\Leftrightarrow 2a^4+48a^2+32=626\)

\(\Leftrightarrow a^4+24a^2-297=0\)

\(\Leftrightarrow (a^2+12)^2=441\)

\(\Rightarrow a^2+12=\sqrt{441}=21\) (do \(a^2+12>0)\)

\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)

Nếu $a=3$ thì \(x=a-1=2\)

Nếu $a=-3$ thì $x=a-1=-4$

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Câu 2:

Đặt \(2x-1=a; x-1=b\). PT đã cho tương đương với:

\(a^3+b^3+(-a-b)^3=0\)

\(\Leftrightarrow a^3+b^3-(a+b)^3=0\)

\(\Leftrightarrow a^3+b^3-[a^3+b^3+3ab(a+b)]=0\)

\(\Leftrightarrow ab(a+b)=0\Rightarrow \left[\begin{matrix} a=0\\ b=0\\ a+b=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} 2x-1=0\\ x-1=0\\ 3x-2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=1\\ x=\frac{2}{3}\end{matrix}\right.\)