Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tu phuong trinh da cho suy ra
(x-1)(x+1)(x+2)(x+4)=0
x=1;-1;-1;-4
\(x^4+6x^3+7x^2-6x+1=9\)
\(\Leftrightarrow x^4+6x^3+7x^2-6x-8=0\)
\(\Leftrightarrow x^4+x^3+5x^3+5x^2+2x^2+2x-8x-8=0\)
\(\Leftrightarrow\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(2x^2+2x\right)-\left(8x+8\right)=0\)
\(\Leftrightarrow x^3\left(x+1\right)+5x^2\left(x+1\right)+2x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+5x^2+2x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^3+5x^2+2x-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x^3+5x^2+2x-8=0\end{cases}}\)
\(x^3+5x^2+2x-8=0\)
\(\Leftrightarrow x^3-x^2+6x^2-6x+8x-8=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(6x^2-6x\right)+\left(8x-8\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+6x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+6x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+6x+8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+4x+2x+8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\left(x+4\right)+2\left(x+4\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)\left(x+2\right)=0\end{cases}}\)
\(\left(x+4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-2\end{cases}}\)
Vậy \(x=\left\{-4;-2;-1;1\right\}\)
Ta có: \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
<=> \(\frac{6\left(x+4\right)-30x+120}{30}=\frac{10x-15x+30}{30}\)
<=> 6x + 24 - 30x + 120 = -5x + 30
<=> -24x + 5x = 30 - 144
<=> -19x = -114
<=> x = 6
Vậy S = {6}
\(6x^4-x^3-7x^2+x+1=0\)
\(\Leftrightarrow\left(6x^4-6x^3\right)+\left(5x^3-5x^2\right)+\left(-2x^2+2x\right)+\left(-x+1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left(6x^3+5x^2-2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(6x^3-3x^2\right)+\left(8x^2-4x\right)+\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[3x^2\left(2x-1\right)+4x\left(2x-1\right)+\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(3x^2+4x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left[\left(3x^2+3x\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left[3x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(x+1\right)\left(3x+1\right)=0\)
\(\left\{{}\begin{matrix}x-1=0\\2x-1=0\\x+1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\x=-1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Mình làm mẫu câu a nha
a, pt <=> ( x-2/7 - 1 ) + ( x-1/8 - 1 ) = ( x-4/5 - 1 ) + ( x-3/6 - 1 )
<=> x-9/7 + x-9/8 = x-9/5 + x-9/6
<=> x-9/5 + x-9/6 - x-9/7 - x-9/8 = 0
<=> (x-9).(1/5+1/6-1/9-1/8) = 0
<=> x-9 = 0 ( vì 1/5+1/6-1/9-1/8 > 0 )
<=> x = 9
Vậy x = 9
Tk mk nha
b: Ta có: \(\dfrac{x+1}{x-2}-\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow x^2+3x+2-x^2+3x-2-2x^2-4=0\)
\(\Leftrightarrow-2x^2+6x-4=0\)
a=-2; b=6; c=-4
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1\left(nhận\right);x_2=\dfrac{c}{a}=2\left(loại\right)\)
a) (x + 6)(3x + 1) + x2 - 36 = 0
<=> 3x2 + x + 18x + 6 + x2 - 36 = 0
<=> 4x2 + 19x - 30 = 0
<=> 4x2 + 24x - 5x - 30 = 0
<=> 4x(x + 6) - 5(x + 6) = 0
<=> (x + 6)(4x - 5) = 0
<=> x + 6 = 0 hoặc 4x - 5 = 0
<=> x = -6 hoặc x = 5/4
Bài 1 mình đã làm xong rồi, anh em nào giúp mình bài 2 với!