K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

11 tháng 4 2020

a) (x - 4)^3 = (x + 4)(x^2 - x - 16)

<=> x^3 - 8x^2 + 16x - 4x^2 + 32x - 64 = x^3 - x^2 - 16x + 4x^2 - 4x - 64

<=> -12x^2 + 48x - 64 = 3x^2 - 20

<=> 12x^2 - 48x + 64 + 3x^2 - 20 = 0

<=> 15x^2 - 68x = 0

<=> x(15x - 68) = 0

<=> x = 0 hoặc 15x - 68 = 0

<=> x = 0 hoặc 15x = 68

<=> x = 0 hoặc x = 68/15

b) \(\frac{x+2}{x}=\frac{x^2+5x+4}{x^2+2x}+\frac{x}{x+2}\)  (ĐKXĐ: x khác 0, x khác -2)

<=> \(\frac{x+2}{x}=\frac{\left(x+1\right)\left(x+4\right)}{x\left(x+2\right)}=\frac{x}{x+2}\)

<=> x(x + 2) + 2(x + 2) = (x + 1)(x + 4) + x^2 

<=> x^2 + 2x + 2x + 4 = x^2 + 4x + x + 4 + x^2

<=> x^2 + 4x + 4 = 2x^2 + 5x + 4

<=> x^2 + 4x = 2x^2 + 5x

<=> x^2 + 4x - 2x^2 - 5x = 0

<=> -x^2 - x = 0

<=> x(x + 1) = 0

<=> x = 0 hoặc x + 1 = 0

<=> x = 0 (ktm) hoặc x = -1 (tm)

Vậy: nghiệm của phương trình là: -1

23 tháng 1 2016

(x+3)^3+(x+5)^4                                                                                                                                             (x+3+x+5)^4=2^4                                                                                                                                           xuy ra 2x+8=2                                                                                                                                               2x=2-8                                                                                                                                                         x=-6/2                                                                                                                                                          x=-3

17 tháng 3 2020

\(\Leftrightarrow x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4=0\)

\(\Leftrightarrow x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+2x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\)

Vì x^2 + 2 > 0  \(\forall x\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)

Vậy ...

17 tháng 3 2020

\(x^4+x^3+2x-4=0\Leftrightarrow\left(x^4-1\right)+\left(x^3-1\right)+\left(2x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\left(x-1\right)\left(x^2+x+1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1+x^2+x+1+2\right)=0\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+2x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\text{ mà }x^2+2>0\text{ nên:}x-1=0\text{ hoặc:}x+2=0\)

x=1 hoặc x=-2

8 tháng 8 2017

Theo Wolfram ta có: (tự viết đề lại nhé)

\(3x^2+22x+40=0\)

\(\Leftrightarrow4x^2+24x+49=x^2+6x+9\)

\(\Rightarrow\orbr{\begin{cases}x=-4\\x=-\frac{10}{3}\end{cases}}\)

Ps: chả biết đúng hay sai!

8 tháng 8 2017

\(\left(2x+7\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\left(2x+7\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x+7-x-3\right)\left(2x+7+x+3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\3x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-\frac{10}{3}\end{cases}}\)

Vậy pt có 2 nghiệm x=-4,x=-10/3

15 tháng 1 2018

câu này xài cách đặt ẩn giống câu trên luôn

b) Đặt n = x2-3x+3 ta được

n(n+x)=2x2

n2 +nx-2x2=0

n^2-1nx+2nx-2x^2=0

n(n-x)+2x(n-x)=0

(n+2x)(n-x)=0

(x^2-3x+3+2x)(x^2-3x+3-x)=0

(x^2-x+3)(x^2-4x+3)=0

mà x^2-x+3 =0                                     

 x^2-1/2.2x+1/4-1/4+3=0                     

(x+1/2)^2+11/4 >0( loại)   

Vậy ta còn    

x^2-4x+3=0

 x^2-1x-3x+3=0                 

 (x-1)(x-3)=0

<=> x-1=0 hay x-3=0

       x=1     hay x=3

Vậy S= (1;3)

                 

                                                                

15 tháng 1 2018

a) (x -1)(x-6)(x-5)(x-2)=252

<=>( x^2-7x+6)(x^2-7x+10)=252

Đặt n=x^2-7x+6 ta được :

n(n+4)=252

n^2+4n-252=0

n^2-14n+18n-252=0

n(n-14)+18(n-14)=0

(n+18)(n-14)=0

r tới đây bạn tự giải tiếp nha, mình đánh máy ko quen nên hơi lâu, với bạn tự thêm dấu tương đương nữa, chờ mình câu2

3 tháng 4 2016

Xét x<0, ta có:

-4x=x^2+4

<=>x^2+4x+4=0

<=>(x+2)^2=0

<=>x=-2

Xét x=0, ta có:

0=4(vô nghiệm)

Xét x>0

<=>4x=x^2+4

<=>x^2-4x+4=0

<=>(x-2)^2=0

<=>x=2

Tích mik nhé!!!

3 tháng 4 2016

chia trường hợp x

x= +- 2