K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Ta có : x4 - 12x - 5 = 0

\(\Leftrightarrow\)x4 - 2x3 - x2 + 2x3 - 4x2 - 2x + 5x2 - 10x - 5 = 0

\(\Leftrightarrow\)x2 ( x2 - 2x - 1 ) + 2x ( x2 - 2x - 1 ) + 5 ( x2 - 2x - 1 ) = 0

\(\Leftrightarrow\)( x2 + 2x + 5 ) ( x2 - 2x - 1 ) = 0

vì x2 + 2x + 5 > 0 nên x2 - 2x - 1 = 0 \(\Rightarrow x=1\pm\sqrt{2}\)

6 tháng 3 2020

x4−12x−5=0x

⇒x4−12x=5

⇒x(x3−12)=5

⇒x;x3−12∈Ư(5)

Bạn tự xét các trường hợp nhé!

#Châu's ngốc

11 tháng 9 2015

Phần b. Nhân cả hai vế với 3 ta được \(3x^3-3x^2-3x=1\to4x^3=x^3+3x^2+3x+1\to4x^3=\left(x+1\right)^3\to\sqrt[3]{4}x=x+1\)

\(\to\left(\sqrt[3]{4}-1\right)x=1\to x=\frac{1}{\sqrt[3]{4}-1}\)

18 tháng 7 2015

dùng phương pháp đặt ẩn phụ

4 tháng 4 2017

a) Phương trình 4x2 + 2x – 5 = 0 có nghiệm vì a = 4, c = -5 trái dấu nhau nên

x1 + x2 = \(-\dfrac{1}{2}\), x1x2 = \(-\dfrac{5}{4}\)

b) Phương trình 9x2 – 12x + 4 = 0 có ∆' = 36 - 36 = 0

x1 + x2 = \(\dfrac{12}{9}\) = \(\dfrac{4}{3}\), x1x2 = \(\dfrac{4}{9}\)

c) Phương trình 5x2+ x + 2 = 0 có ∆ = 12 - 4 . 5 . 2 = -39 < 0

Phương trình vô nghiệm, nên không tính được tổng và tích các nghiệm.

d) Phương trình 159x2 – 2x – 1 = 0 có hai nghiệm phân biệt vì a và c trái dấu

x1 + x2 = \(\dfrac{2}{159}\), x1x2 = \(-\dfrac{1}{159}\)

4 tháng 4 2017

a) Phương trình 4x2 + 2x – 5 = 0 có nghiệm vì a = 4, c = -5 trái dấu nhau nên

x1 + x2 = , x1x2 =

b) Phương trình 9x2 – 12x + 4 = 0 có ∆' = 36 - 36 = 0

x1 + x2 = = , x1x2 =

c) Phương trình 5x2+ x + 2 = 0 có ∆ = 12 - 4 . 5 . 2 = -39 < 0

Phương trình vô nghiệm, nên không tính được tổng và tích các nghiệm.

d) Phương trình 159x2 – 2x – 1 = 0 có hai nghiệm phân biệt vì a và c trái dấu

x1 + x2 = , x1x2 =

18 tháng 9 2018

Với x = -3 ta có -27-4*9+ 36+27=0 do đó đa thức chứa nhân tử x+3
Ta có: x^3 -4x^2-12x+27 = x^3 +3x^2 -7x^2-21x+9x+27 =(x^3 +3x^2)-(7x^2+21x) + (9x+27) =x^2(x+3) -7x(x+3)+ 9(x+3)=(x+3)(X^2 - 7x+9)
* Xét x^2 -7x + 9 = x^2 - 2x.7/2 +49/4-49/4+9 = (x-7/2)^2 -13/4 =(x-7/2- √13/2)(x-7/2+√13/2)
Vậy: x^3 -4x^2-12x+27 = (x+3)(x-7/2)^2 -13/4 =(x-7/2- √13/2)(x-7/2+√13/2)

6 tháng 4 2017

a). Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(3y^2-12y+9=0\)

\(\Leftrightarrow y^2-4y+3=0\)

Nhận xét : \(a+b+c=1+\left(-4\right)+3=0\)

\(\Rightarrow y_1=1\) (TM \(y\ge0\))

\(y_2=\dfrac{3}{1}=3\)

Với \(y=y_1=1\Rightarrow x^2=1\Leftrightarrow x_1=1;x_2=-1\)

Với \(y=y_2=3\Rightarrow x^2=3\Leftrightarrow x_3=\sqrt{3};x_4=-\sqrt{3}\)

Vậy \(x_1=1;x_2=-1;x_3=\sqrt{3};x_4=-\sqrt{3}\) là các giá trị cần tìm

b) . Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(2y^2+3y-2=0\)

\(\Delta_y=3^2-4\cdot2\cdot\left(-2\right)=9+16=25\) \(\left(\sqrt{\Delta}=5\right)\)

\(\Delta>0\) nên pt có 2 nghiệm phân biệt

\(\Rightarrow\)\(y_1=\dfrac{-3+5}{2\cdot2}=\dfrac{1}{2}\) (TM \(y\ge0\) )

\(y_2=\dfrac{-3-5}{2\cdot2}=-2\) (KTM \(y\ge0\) )

Với \(y=y_1=\dfrac{1}{2}\Rightarrow x^2=\dfrac{1}{2}\Leftrightarrow x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\)

Vậy \(x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\) là các giá trị cần tìm

c) Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;

\(y^2+5y+1=0\)

\(\Delta_y=5^2-4\cdot1\cdot1=25-4=21\)

\(\Delta>0\) nên pt có 2 nghiệm phân biệt

\(\Rightarrow y_1=\dfrac{-5+\sqrt{21}}{2\cdot1}=\dfrac{-5+\sqrt{21}}{2}\) (KTM \(y\ge0\))

\(y_2=\dfrac{-5-\sqrt{21}}{2\cdot1}=\dfrac{-5-\sqrt{21}}{2}\) (KTM \(y\ge0\))

Vậy pt đã cho vô nghiệm

10 tháng 4 2017

phần b sai rồi

b, 2x4+3x2-2=0

Đặt x2=t (t>0) ta có

2t2 + 3t-2=0

\(\Delta\)=32-4.2.(-2)=25 \(\Rightarrow\)\(\sqrt{\Delta}\)=5

\(\Delta\)>0 nên PT có 2 nghiệm phân biệt

t1=\(\dfrac{-3+5}{2.2}=\dfrac{1}{2}\) (thỏa mãn)

t2=\(\dfrac{-3-5}{2.2}=-2\) (loại)

với t1=\(\dfrac{1}{2}\) => x2=\(\dfrac{1}{2}\) => x1=\(\pm\sqrt{\dfrac{1}{2}}\) =>x1=\(\pm\dfrac{\sqrt{2}}{2}\)

vậy PT đã cho có 2 nghiệm phân biệt là x1=\(-\dfrac{\sqrt{2}}{2}\) ;x2=\(\dfrac{\sqrt{2}}{2}\)

9 tháng 3 2016

đây là pt đối xứng mà bạn 

9 tháng 3 2016

Bạn giải chi tiết cho mình được không? Mình chưa học đến phần này