\(x^3+y^3-6xy+8=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

PT <=> \(\left(x+y\right)^3+8-3x^2y-3xy^2-6xy=0\)

\(\left(x+y+2\right)\left(x^2+2xy+y^2-2x-2y+4\right)-3xy\left(x+y+2\right)=0\)

<=> \(\left(x+y+2\right)\left(x^2-xy+y^2-2x-2y+4\right)=0\)

\(\left(x+y+2\right)\left[\frac{1}{2}\left(x^2-2xy+y^2\right)+\frac{1}{2}\left(x^2-4x+4\right)+\frac{1}{2}\left(y^2-4y+4\right)=0\right]\)

<=> \(\frac{1}{2}\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]=0\)

<=> x = y = 2

3 tháng 6 2017

c, x^3 - y^3 = xy + 8

1) Nếu x-y <= -1
(x -y)(x^2 + xy + y^2) = xy +8
=> (x -y)(x^2 + xy + y^2) <= -(x^2 + xy +y^2)
=> xy +8 <= -(x^2 + xy +y^2)
=> (x+y)^2 + 8 <=0 => Vô nghiệm

2) Nếu x-y =0 => x=y , Vô nghiệm

3) x- y>=1
=> (x -y)(x^2 + xy + y^2) >= x^2 + xy + y^2
=> xy + 8 >= x^2 + xy + y^2
=> x^2 + y^2 <=8
=> x^2 <=8

=> x=0 => y= -2
=> x= 1 => y + y^3 + 7 =0 (loại)

3 tháng 6 2017

a,\(x^2+2y^2+z^2-2xy-2y+2z+2=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2+2x+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=-1\end{matrix}\right.\)

3 tháng 6 2017

PTNN là gì bạn ?

3 tháng 4 2018

a) \(|2x+1|=|x-3|\)

\(\Leftrightarrow|2x+1|-|x-3|=0\)

Lập bảng xét dấu :

x \(\frac{-1}{2}\) 3 
2x+1-0+\(|\)+
x-3-\(|\)-0+

Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)

                                    \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow-2x-1-3+x=0\)

\(\Leftrightarrow-x=4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

Nếu  \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)

                                               \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x+1-3+x=0\)

\(\Leftrightarrow3x-2=0\)

\(x=\frac{2}{3}\left(tm\right)\)

Nếu  \(x>3\) thì \(|2x+1|=2x+1\) 

                               \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)

\(\Leftrightarrow2x+1-x+3=0\)

\(\Leftrightarrow x=-4\) ( loại )

3 tháng 4 2018

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)

Mà \(\left(x^2+1\right)^2\ge0\forall x\)

      \(\left(x-3\right)^2\ge0\forall x\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)

Lại có \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2=-1\) ( vô lí )

Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi

22 tháng 4 2019

a)

voi x=0 ta thay 0 o phai la no pt

voi x<>0 chia ca 2 ve cho x^2 ta dc

x^2-3x+6-3/x+1/x^2=0

(x^2+1/x^2)-3(x+1/x)+6=0 dat a=x+1/x ta co (x+1/x)^2=a^2=>x^2+1/x^2=a^2-2

=>a^2-3a+4=0=>pt vo no :(

6 tháng 3 2018

x^3 - 9X^2 +19x -11 =0

<=> (x^3 - x^2) - (8x^2 - 8x) +(11x-11)=0

<=> x^2(x-1) - 8x(x-1) + 11(x-1)=0

<=> (x-1)(x^2-8x+11) = 0

<=> x-1=0

<=> x=1

6 tháng 3 2018

9x^3 - 6x^2 +12x=8

<=> 9x^3-6x^2+12x-8=0

<=. 3x^2(3x-2) + 4(3x-2)=0

<=> (3x-2)(3x^2 +4 ) =0

<=> 3x-2 = 0 (do 3x^2 +4 >= 4 >0)

<=> x= 2/3