
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


c, x^3 - y^3 = xy + 8
1) Nếu x-y <= -1
(x -y)(x^2 + xy + y^2) = xy +8
=> (x -y)(x^2 + xy + y^2) <= -(x^2 + xy +y^2)
=> xy +8 <= -(x^2 + xy +y^2)
=> (x+y)^2 + 8 <=0 => Vô nghiệm
2) Nếu x-y =0 => x=y , Vô nghiệm
3) x- y>=1
=> (x -y)(x^2 + xy + y^2) >= x^2 + xy + y^2
=> xy + 8 >= x^2 + xy + y^2
=> x^2 + y^2 <=8
=> x^2 <=8
=> x=0 => y= -2
=> x= 1 => y + y^3 + 7 =0 (loại)

a,\(x^2+2y^2+z^2-2xy-2y+2z+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2+2x+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=-1\end{matrix}\right.\)

a) \(|2x+1|=|x-3|\)
\(\Leftrightarrow|2x+1|-|x-3|=0\)
Lập bảng xét dấu :
x | \(\frac{-1}{2}\) | 3 | |||
2x+1 | - | 0 | + | \(|\) | + |
x-3 | - | \(|\) | - | 0 | + |
Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow-2x-1-3+x=0\)
\(\Leftrightarrow-x=4\)
\(\Leftrightarrow x=-4\left(tm\right)\)
Nếu \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x+1-3+x=0\)
\(\Leftrightarrow3x-2=0\)
\(x=\frac{2}{3}\left(tm\right)\)
Nếu \(x>3\) thì \(|2x+1|=2x+1\)
\(|x-3|=x-3\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)
\(\Leftrightarrow2x+1-x+3=0\)
\(\Leftrightarrow x=-4\) ( loại )
\(x^4+x^2+6x-8=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)
Mà \(\left(x^2+1\right)^2\ge0\forall x\)
\(\left(x-3\right)^2\ge0\forall x\)
Dấu bằng xảy ra khi :
\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)
Lại có \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2=-1\) ( vô lí )
Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)


a)
voi x=0 ta thay 0 o phai la no pt
voi x<>0 chia ca 2 ve cho x^2 ta dc
x^2-3x+6-3/x+1/x^2=0
(x^2+1/x^2)-3(x+1/x)+6=0 dat a=x+1/x ta co (x+1/x)^2=a^2=>x^2+1/x^2=a^2-2
=>a^2-3a+4=0=>pt vo no :(

x^3 - 9X^2 +19x -11 =0
<=> (x^3 - x^2) - (8x^2 - 8x) +(11x-11)=0
<=> x^2(x-1) - 8x(x-1) + 11(x-1)=0
<=> (x-1)(x^2-8x+11) = 0
<=> x-1=0
<=> x=1
PT <=> \(\left(x+y\right)^3+8-3x^2y-3xy^2-6xy=0\)
\(\left(x+y+2\right)\left(x^2+2xy+y^2-2x-2y+4\right)-3xy\left(x+y+2\right)=0\)
<=> \(\left(x+y+2\right)\left(x^2-xy+y^2-2x-2y+4\right)=0\)
\(\left(x+y+2\right)\left[\frac{1}{2}\left(x^2-2xy+y^2\right)+\frac{1}{2}\left(x^2-4x+4\right)+\frac{1}{2}\left(y^2-4y+4\right)=0\right]\)
<=> \(\frac{1}{2}\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]=0\)
<=> x = y = 2