\(x^3+ax+bx+c=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2018

Lời giải:

Ta có:

\(P(x)=ax^2+bx+c\)

\(\Rightarrow \left\{\begin{matrix} P(-1)=a-b+c\\ P(3)=9a+3b+c\end{matrix}\right.\)

Suy ra: \(P(3)-P(-1)=9a+3b+c-(a-b+c)\)

\(=8a+4b=4(2a+b)=0\)

\(\Rightarrow P(3)=P(-1)\)

\(\Rightarrow P(-1)P(3)=[P(3)]^2\geq 0\)

Ta có đpcm.

2 tháng 5 2018

2a+b=0=>b=-2a

p(x)=ax^2 -2ax+c

p(-1)=a(-1)^2-2a(-1)+c=3a+c

p(3)=9a-6a+c=3a+c

p(-1).p(3)=(3a+c)^2 >=0=>dpcm

26 tháng 4 2018

ai làm hộ mình cái mình k cho

17 tháng 9 2018

Với \(x_0\ne0:\)

Nếu \(f\left(x_0\right)=0\Rightarrow ax_0^2+bx_0+c=0\)

Khi đó \(g\left(\frac{1}{x_0}\right)=c\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+b.x_0+ax_0^2}{x^2_0}=0\)

4 tháng 5 2018

Có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)

\(\Rightarrow P\left(-1\right).P\left(3\right)=\left(a-b+c\right).\left(9a+3b+c\right)\)

\(=\left(a-b+c\right)\left[4\left(2a+b\right)+a-b+c\right]\)

\(=\left(a-b+c\right)\left(a-b+c\right)\)

\(=\left(a+b-c\right)^2\ge0\left(ĐPCM\right)\)

16 tháng 6 2020

Với \(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a-b+c\)

\(P\left(3\right)=a3^2+3b+c=9a+3b+c\)

từ đó suy ra \(P\left(-1\right).P\left(3\right)=\left(a-b+c\right)\left(9a+3b+c\right)\)

\(=\left(a-b+c\right)\left[\left(8a+4b\right)+a-b+c\right]\)

\(=\left(a-b+c\right)\left[4\left(2a+b\right)+a-b+c\right]\)

\(=\left(a-b+c\right)\left(a-b+c\right)=\left(a-b+c\right)^2\ge\)(đpcm)

13 tháng 5 2019

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)

                    \(=4a-2b+c\)

\(\Rightarrow f\left(3\right)=a.3^2+b.3+c\)

                  \(=9a+3b+c\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

                                      \(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)\le0\)

12 tháng 4 2018

Ta có P(-1) = a - b + c = 0

Vậy x = -1 là nghiệm của đa thức P(x)