\(x^3=6\left(\sqrt[3]{6x-9}\right)-9\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2020

Đặt: \(\sqrt[3]{6x-9}=t\Leftrightarrow t^3=6x-9\)

Ta có hệ: 

\(\hept{\begin{cases}x^3=6t-9\\t^3=6x-9\end{cases}}\)

=> \(x^3-t^3=-6\left(x-t\right)\)

<=> \(\left(x-t\right)\left(x^2+xt+t^2+6\right)=0\)

<=> x = t 

vì \(x^2+xt+\frac{1}{4}t^2+\frac{3}{4}t^2+6=\left(x+\frac{1}{2}t\right)^2+\frac{3}{4}t^2+6>0\)

Với x = t ta có: \(\sqrt[3]{6x-9}=x\Leftrightarrow x^3=6x-9\)

<=> x = -3 thử lại thỏa mãn 

Kết luận:...

\(\sqrt{10\left(x-3\right)}=\sqrt{26}\)

\(\Rightarrow10\left(x-3\right)=26\)

\(\Rightarrow x-3=2.6\)

\(\Rightarrow x=3+2,6=5,6\)

\(\sqrt{3x^2}=x+2\Rightarrow3x^2=x^2+4x+4\)

\(\Rightarrow3x^2-x^2-4x-4=0\)

\(\Rightarrow2x^2-4x-4=0\)

\(\Rightarrow x^2-2x-2=0\)

\(a=1;b=-2;c=-2;b'=-1\)

\(\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(-2\right)=3>0\)

Phương trình có 2 nghiệp phân biệt 

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)+\sqrt{3}}{1}=1+\sqrt{3}\)

\(x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)-\sqrt{3}}{1}=1-\sqrt{3}\)

\(\sqrt{x^2+6x+9}=3x-6\)

\(x^2+6x+9=9x^2-36x+36\)

\(9x^2-x^2-36x-6x+36-9=0\)

\(8x^2-42x+27=0\)

\(a=8;b=-42;c=27;b'=-21\)

\(\Delta'=b'^2-ac=\left(-21\right)^2-8.27=225>0\)

Phương trình có 2 nghiệp phân biệt 

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)+\sqrt{225}}{8}=\frac{21+15}{8}=\frac{36}{8}=\frac{9}{2}\)

\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)-\sqrt{225}}{8}=\frac{21-15}{8}=\frac{6}{8}=\frac{3}{4}\)

NV
31 tháng 5 2020

Đặt \(\sqrt[3]{6x-9}=a\Rightarrow-9=a^3-6x\)

Phương trình trở thành:

\(x^3=6a+a^3-6x\)

\(\Leftrightarrow x^3-a^3+6\left(x-a\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+a^2-ax\right)+6\left(x-a\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+a^2-ax+6\right)=0\)

\(\Leftrightarrow x=a\Leftrightarrow x=\sqrt[3]{6x-9}\)

\(\Leftrightarrow x^3-6x+9=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+3\right)=0\)

19 tháng 4 2021

hđt sai kìa bạn ơi

 

13 tháng 6 2020

Đặt: \(\sqrt[3]{6x-9}=t\)

<=> \(t^3=6x-9\)

Ta có hệ phương trình: \(\hept{\begin{cases}x^3=6t-9\\t^3=6x-9\end{cases}}\)

trừ vế theo vế => \(\left(x^3-t^3\right)+6\left(x-t\right)=0\)

<=> \(\left(x-t\right)\left(x^2+t^2+xt+6\right)=0\)

<=> x = t 

khi đó: \(x^3=6x-9\)<=> x = - 3

Kết luận: x = - 3.

26 tháng 6 2019

\(a,\sqrt{\frac{5.\left(38^2-17^2\right)}{8.\left(47^2-19^2\right)}}\)

\(=\sqrt{\frac{5.\left(38-17\right)\left(38+17\right)}{8.\left(47-19\right)\left(47+19\right)}}\)

\(=\sqrt{\frac{5.21.55}{8.28.66}}\)

\(=\sqrt{\frac{5775}{14784}}=\frac{5\sqrt{231}}{2\sqrt{4370}}\)

26 tháng 6 2019

.bn tính lại \(\sqrt{14784}\)đi sao lạ vậy