Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\sqrt{12y-x^2y}=12-x\sqrt{12-y}\)
\(\Rightarrow12y-x^2y=144+12x^2-x^2y-24x\sqrt{12-y}\)
\(\Leftrightarrow x^2-2x\sqrt{12-y}+12-y=0\)
\(\Leftrightarrow\left(x-\sqrt{12-y}\right)^2=0\Rightarrow x=\sqrt{12-y}\)
\(\Rightarrow y=12-x^2\)
Thay vào pt (1):
\(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\)
\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)
\(\Leftrightarrow3\left(x^2-x\right)+\frac{x^2-x}{x+1+\sqrt{3x+1}}+\frac{x^2-x}{x+2+\sqrt{5x+4}}=0\)
\(\Leftrightarrow...\)
Bài 1:
a) \((a-b)(a+b)=a^2-b^2\) (theo hằng đẳng thức đáng nhớ)
b) \((8x^3y^3-12y^3-12x^3y^5):(2x^3y^2)=\frac{8x^3y^3}{2x^3y^2}-\frac{12y^3}{2x^3y^2}-\frac{12x^3y^5}{2x^3y^2}\)
\(=4y-\frac{6y}{x^3}-6y^3=4y-6x^{-3}y-6y^3\)
c)
\((x^3+1):(x^2-x+1)=\frac{x^3+1}{x^2-x+1}=\frac{(x+1)(x^2-x+1)}{x^2-x+1}=x+1\)
Bài 2:
a)
\(6x^2y-18xy^2=6xy(x-3y)\)
b)
\(x^3+x^2-4x-4=(x^3+x^2)-(4x+4)=x^2(x+1)-4(x+1)\)
\(=(x+1)(x^2-4)=(x+1)(x^2-2^2)=(x+1)(x-2)(x+2)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=35\\6x^2+9y^2=12x-27y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-6x^2-9y^2=35-12x+27y\)
\(\Leftrightarrow x^3-6x^2+12x-8=y^3+9y^2+27y+27\)
\(\Leftrightarrow\left(x-2\right)^3=\left(y+3\right)^3\)
\(\Leftrightarrow x-2=y+3\)
\(\Leftrightarrow y=x-5\)
Thay vào pt dưới: \(2x^2+3\left(x-5\right)^2=4x-9\left(x-5\right)\)
\(\Leftrightarrow...\)