K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

(x3 + x2) + (x2 + x) = 0

⇔x2 (x + 1) + x(x + 1) = 0

⇔(x2 + x)(x + 1) = 0

⇔x(x + 1)(x + 1) = 0

⇔x = 0 hoặc x + 1 = 0

⇔x = 0 hoặc x = -1

Vậy tập nghiệm của phương trình là : S = {0; -1}

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

11 tháng 5 2020

\(x^2-x=x\left(x-1\right)\)

ĐKXĐ: \(x\ne0;x\ne1\)

\(x^2-x-18+\frac{72}{x^2-x}=0\)

\(\Leftrightarrow\left(x^2-x-18\right)\left(x^2-x\right)+72=0\Leftrightarrow\left(x^2-x\right)^2-18\left(x^2-x\right)+72=0\)

\(\Leftrightarrow\left(x^2-x-9\right)^2-3^2=0\)

\(\Leftrightarrow\left(x^2-x-6\right)\left(x^2-x-12\right)=0\)

\(\Leftrightarrow x=\left\{3;-2;-3;4\right\}\)

4 tháng 3 2020

(x2 + x  + 1)(6 - 2x) = 0

<=> 6 - 2x = 0 (do x2 + x + 1 > 0)

<=> 2x = 6

<=> x = 3

Vậy S = {3}

(8x - 4)(x2 + 2x + 2) = 0

<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)

<=> 8x = 4

<=> x = 1/2 

Vậy S  = {1/2}

x3 - 7x + 6 = 0

<=> x3 - x - 6x + 6 = 0

<=> x(x2 - 1) - 6(x - 1) = 0

<=> x(x - 1)(x + 1) - 6(x - 1) = 0

<=> (x2 + x - 6)(x - 1) = 0

<=> (x2 + 3x - 2x - 6)(x - 1) = 0

<=> (x + 3)(x - 2)(x - 1) = 0

<=> x + 3 = 0

hoặc x - 2 = 0

hoặc x  - 1 = 0

<=> x = -3

hoặc x = 2

hoặc x = 1

Vậy S = {-3; 1; 2}

x5 - 5x3 + 4x = 0

<=> x(x4 - 5x2 + 4) = 0

<=> x(x4 - x2 - 4x2 + 4) = 0

<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0

<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0

<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x  + 1 = 0

<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1

Vậy S = {-2; -1; 0; 1; 2}

4 tháng 3 2020

+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

 - Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

  \(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)

Vậy \(S=\left\{3\right\}\)

+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

 - Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)

 - Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

   \(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

+ Ta có: \(x^3-7x+6=0\)

       \(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)

       \(\Leftrightarrow x^2.\left(x-1\right)+x.\left(x-1\right)-6.\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\) 

       \(\Leftrightarrow\left(x-1\right).\left[x.\left(x-2\right)+3.\left(x-2\right)\right]=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)

       \(\Leftrightarrow x=1\left(TM\right)\)hoặc \(x=2\left(TM\right)\)hoặc \(x=-3\left(TM\right)\)

 Vậy \(S=\left\{-3;1;2\right\}\)

 + Ta có: \(x^5-5x^3+4x=0\)

        \(\Leftrightarrow x.\left(x^4-5x^2+4\right)=0\)

       \(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)

       \(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)

       \(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)

       \(\Leftrightarrow x=0\left(TM\right)\)

hoặc  \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)

hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)

Vậy \(S=\left\{-2;-1;0;1;2\right\}\)

!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!      

11 tháng 8 2017

câu 1 theo cách nhẩm nghiệm thì mình thấy hình như bn chép sai đề r

x2-1/x-1>0=>(x-1)(x+1)/x-1>0 rút gọn vế trái còn x+1>0=.x>-1

x2-6x+9>0=>x-3(x-3)>0=>xảy ra khi 2 thừa số này cùng dấu =>x>3 hoặc x<3

9 tháng 3 2019

\(x^4+1997x^2+1996x+1997=0\)

\(\Leftrightarrow\left(x^4-x\right)+1997\left(x^2+x+1\right)=0\)

\(\Leftrightarrow x\left(x^3-1\right)+1997\left(x^2+x+1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+1997\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1997\right)\left(x^2+x+1\right)=0\)

\(\hept{\begin{cases}x^2-x+1997>0\\x^2+x+1>0\end{cases}}\Rightarrow ptvn\)

\(x^2-x+2011.2012=0\)

\(\Leftrightarrow x^2+2011x-2012x+2011.2012=0\)

\(\Leftrightarrow x\left(x+2011\right)-2012\left(x+2011\right)=0\Leftrightarrow\left(x-2012\right)\left(x+2011\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2012=0\\x+2011=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2012\\x=-2011\end{cases}}\)

9 tháng 3 2019

câu b) đề sai nhé,ở trên mk nhầm

c)

\(x^5=x^4+x^3+x^2+x+2\)

\(\Leftrightarrow x^5-x^4-x^3-x^2-x-2=0\)

\(\Leftrightarrow x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow x^4\left(x-2\right)+x^3\left(x-2\right)+x^2\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^4+x^3+x^2+1\right)\left(x-2\right)=0\Leftrightarrow x=2\)

3 tháng 4 2018

a) \(|2x+1|=|x-3|\)

\(\Leftrightarrow|2x+1|-|x-3|=0\)

Lập bảng xét dấu :

x \(\frac{-1}{2}\) 3 
2x+1-0+\(|\)+
x-3-\(|\)-0+

Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)

                                    \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow-2x-1-3+x=0\)

\(\Leftrightarrow-x=4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

Nếu  \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)

                                               \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x+1-3+x=0\)

\(\Leftrightarrow3x-2=0\)

\(x=\frac{2}{3}\left(tm\right)\)

Nếu  \(x>3\) thì \(|2x+1|=2x+1\) 

                               \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)

\(\Leftrightarrow2x+1-x+3=0\)

\(\Leftrightarrow x=-4\) ( loại )

3 tháng 4 2018

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)

Mà \(\left(x^2+1\right)^2\ge0\forall x\)

      \(\left(x-3\right)^2\ge0\forall x\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)

Lại có \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2=-1\) ( vô lí )

Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)

9 tháng 3 2021

a) pt <=> ( x - 1 )3 + x2( x - 1 ) = 0

<=> ( x - 1 )[ ( x - 1 )2 + x2 ] = 0

<=> x = 1

Vậy pt có nghiệm x = 1

b) x2 + x - 12 = 0

<=> x2 - 3x + 4x - 12 = 0

<=> x( x - 3 ) + 4( x - 3 ) = 0

<=> ( x - 3 )( x + 4 ) = 0

<=> x = 3 hoặc x = -4

Vậy S = { 3 ; -4 }

c) x + x4 = 0

<=> x( x3 + 1 ) = 0

<=> x( x + 1 )( x2 - x + 1 ) = 0

<=> x = 0 hoặc x = -1

Vậy S = { 0 ; -1 }

9 tháng 3 2021

a,\(x^3-3x^2+3x-1+x\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)+x\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x-1\right)^3+x^2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x-1\right)^2+x^2\right]=0\)

\(\Leftrightarrow x=1\)