Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, ĐK \(x\ge-4\)
PT
<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)
<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)
<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)
<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)
Giải (2)
=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)
<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)
<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)
<=> \(x^2-7x-4=6\sqrt{x+4}\)
<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)
Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)
=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)
=> \(a^2-b^2+6\left(a-b\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)
+ a=b
=> \(x-6=\sqrt{x+4}\)
=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)
+ a+b+6=0
=> \(x+\sqrt{x+4}=0\)(loại)
Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)
ĐK \(\frac{-11}{5}\le x\le6\)
Ta có: \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)
\(\Leftrightarrow\left(\sqrt{5x+11}-6\right)-\left(\sqrt{6-x}-1\right)+\left(x-5\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\frac{5\left(x-5\right)}{\sqrt{5x+11}+6}+\frac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11\right]=0\)
\(\Leftrightarrow x=5\)(Do \(\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11>0\)với \(\frac{-11}{5}\le x\le6\)
Vậy pt đã cho có nghiệm duy nhất x=5
a)\(\Leftrightarrow x^3+6x^2+12x+8+2\sqrt{\left(x+2\right)^3}+1-\left(9x^2+18x+9\right)=0\)
\(\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}+1-\left(3x+3\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1\right)^2-\left(3x+3\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1+3x+3\right)\left(\sqrt{\left(x+2\right)^3}+1-3x-3\right)=0\)
Đến đây bạn tự giải tiếp nhé
\(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)
\(\Leftrightarrow x^3-5x^2+11x-7=6\sqrt[3]{x^2-x+1}-3x-3\)
\(\Leftrightarrow x^3-5x^2+11x-7=3\frac{8x^2-8x+8-\left(x^3+3x^2+3x+1\right)}{4\sqrt[3]{\left(x^2-x+1\right)^2}+2\sqrt[3]{x^2-x+1}\left(x+1\right)+\left(x+1\right)^2}\)
\(\Leftrightarrow\left(x^3-5x^2+11x-7\right)\left(1+\frac{3}{4\sqrt[3]{\left(x^2-x+1\right)^2}+2\sqrt[3]{x^2-x+1}\left(x+1\right)+\left(x+1\right)^2}\right)=0\)
\(\Leftrightarrow x^3-5x^2+11x-7=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+7\right)=0\)
\(\Leftrightarrow x=1\).
cảm ơn anh đã giúp ạ