\(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
29 tháng 5 2021

\(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

\(\Leftrightarrow x^3-5x^2+11x-7=6\sqrt[3]{x^2-x+1}-3x-3\)

\(\Leftrightarrow x^3-5x^2+11x-7=3\frac{8x^2-8x+8-\left(x^3+3x^2+3x+1\right)}{4\sqrt[3]{\left(x^2-x+1\right)^2}+2\sqrt[3]{x^2-x+1}\left(x+1\right)+\left(x+1\right)^2}\)

\(\Leftrightarrow\left(x^3-5x^2+11x-7\right)\left(1+\frac{3}{4\sqrt[3]{\left(x^2-x+1\right)^2}+2\sqrt[3]{x^2-x+1}\left(x+1\right)+\left(x+1\right)^2}\right)=0\)

\(\Leftrightarrow x^3-5x^2+11x-7=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+7\right)=0\)

\(\Leftrightarrow x=1\).

30 tháng 5 2021

cảm ơn anh đã giúp ạ

6 tháng 7 2019

câu a

Học tại nhà - Toán - Bài 110035

6 tháng 7 2019

b,  ĐK \(x\ge-4\)

PT 

<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)

<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)

Giải (2)

=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)

<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)

<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)

<=> \(x^2-7x-4=6\sqrt{x+4}\)

<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)

Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)

=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)

=> \(a^2-b^2+6\left(a-b\right)=0\)

<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)

+ a=b

=> \(x-6=\sqrt{x+4}\)

=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)

+ a+b+6=0

=> \(x+\sqrt{x+4}=0\)(loại)

Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)

11 tháng 5 2020

ĐK \(\frac{-11}{5}\le x\le6\)

Ta có: \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

\(\Leftrightarrow\left(\sqrt{5x+11}-6\right)-\left(\sqrt{6-x}-1\right)+\left(x-5\right)\left(5x+11\right)=0\)

\(\Leftrightarrow\frac{5\left(x-5\right)}{\sqrt{5x+11}+6}+\frac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(5x+11\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11\right]=0\)

\(\Leftrightarrow x=5\)(Do \(\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11>0\)với \(\frac{-11}{5}\le x\le6\)

Vậy pt đã cho có nghiệm duy nhất x=5

22 tháng 8 2015

sorry! Em moi hoc lop 6.

23 tháng 8 2015

a)\(\Leftrightarrow x^3+6x^2+12x+8+2\sqrt{\left(x+2\right)^3}+1-\left(9x^2+18x+9\right)=0\)

\(\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}+1-\left(3x+3\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1\right)^2-\left(3x+3\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1+3x+3\right)\left(\sqrt{\left(x+2\right)^3}+1-3x-3\right)=0\)

Đến đây bạn tự giải tiếp nhé