\(x^3-3x^2+9x-9=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

\(\left(x-1\right)^3=x^3-3x^2+3x-1\)

\(\Leftrightarrow y^3+6y-2=0\)(*)

(*) có nghiệm \(y=\sqrt[3]{4}-\sqrt[3]{2}\) do mình nhớ có lần làm cái bài này

Tính Giá trị A= (a^3+6a-2)^2016 với \(a=\sqrt[3]{2}\left(\sqrt[3]{2}-1\right)\) 

KL:

\(x=\sqrt[3]{4}-\sqrt[3]{2}+1\)

2 tháng 2 2017

bạn giải chi tiết đoạn tìm no Y dc ko

3 tháng 5 2017

a. ĐKXĐ: \(x\ge-\frac{10}{3}\) 

Điều kiện có nghiệm : \(x^2+9x+20\ge0\Leftrightarrow\orbr{\begin{cases}x\ge-4\\x\le-5\end{cases}}\)

Kết hợp ta có điều kiện \(x\ge-\frac{10}{3}.\)

Từ phương trình ta có: \(x^2+9x+18=2\left(\sqrt{3x+10}-1\right)\)

\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=2.\frac{3x+9}{\sqrt{3x+10}+1}\)

\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=\frac{6\left(x+3\right)}{\sqrt{3x+10}+1}\)

\(\Leftrightarrow\left(x+3\right)\left(x+6-\frac{6}{\sqrt{3x+10}+1}\right)=0\)

TH1: x = - 3 (tm)

Th2: \(x+6-\frac{6}{\sqrt{3x+10}+1}=0\)

\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x+6-6=0\)

\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x=0\)

Đặt \(\sqrt{3x+10}=t\Rightarrow x=\frac{t^2-10}{3}\)

Vậy thì \(\left(\frac{t^2-10}{3}+6\right)t+\frac{t^2-10}{3}=0\)

\(\Leftrightarrow\frac{t^3+8t}{3}+\frac{t^2-10}{3}=0\Leftrightarrow t^3+t^2+8t-10=0\Leftrightarrow t=1\Leftrightarrow x=-3\left(tm\right).\)

Vậy pt có 1 nghiệm duy nhất x = - 3.

b. Nhân 2 vào hai vế của phương trình thứ nhất rồi trừ từng vế cho phương trình thứ hai, ta được:

\(2x^2y^2-4x+2y^2-\left(2x^2-4x+y^3+3\right)=0\)

\(\Leftrightarrow2x^2y^2-2x^2-y^3+2y^2-3=0\)

\(\Leftrightarrow2x^2\left(y^2-1\right)-\left(y+1\right)\left(y^2-3y+3\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(2x^2y-2x^2-y^2+3y-3\right)=0\)

Với y = - 1 ta có \(x^2-2x+1=0\Leftrightarrow x=1.\)

Với \(\left(2x^2+3\right)y-\left(2x^2+3\right)-y^2=0\Leftrightarrow\left(2x^2+3\right)\left(y-1\right)=y^2\)

\(\Rightarrow\frac{y^2}{y-1}-4x=-y^3\Rightarrow x=\frac{y^4-y^3+y^2}{4\left(y-1\right)}\)

Thế vào pt (1) : Vô nghiệm.

Vậy (x; y) = (1; -1)

9 tháng 5 2017

Thank you bạn nha

3 tháng 3 2020

nhận thấy x = 0 không là nghiệm của phương trình

Chia 2 vế phương trình cho x2, ta được : 

\(x^2-9x+24-\frac{27}{x}+\frac{9}{x^2}=0\)  ( 1 )

đặt \(t=x+\frac{3}{x}\)

( 1 ) \(\Leftrightarrow\left(x+\frac{3}{x}\right)^2-9\left(x+\frac{3}{x}\right)+18=0\)

\(\Leftrightarrow t^2-9t+18=0\Leftrightarrow\left(t-6\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=3\end{cases}}\)

Khi đó : \(\orbr{\begin{cases}x+\frac{3}{x}=6\Leftrightarrow x=3\pm\sqrt{6}\\x+\frac{3}{x}=3\Leftrightarrow x\in\varnothing\end{cases}}\)

16 tháng 6 2017

mọi người ưi giúp tui giải câu a thui nha tui giải đc câu b ròi làm ơn nhanh giúp thanks nhìu nhìu

NV
22 tháng 9 2020

\(x^4-4x^3-2x^2-16x-24=0\)

Giả sử đa thức được tách về dạng:

\(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Nhân phá ra ta được:

\(x^4+\left(a+c\right)x^3+\left(b+d+ac\right)x^2+\left(ad+bc\right)x+bd\)

Đồng nhất hệ số với vế trái: \(\Rightarrow\left\{{}\begin{matrix}a+c=-4\\b+d+ac=-2\\ad+bc=-16\\bd=-24\end{matrix}\right.\)

Giải hệ pt này rất tốn thời gian, nên ta sẽ xử lý tiếp bằng cách dự đoán

\(bd=-24\) nên có thể \(\left(b;d\right)=\left(2;-12\right);\left(-2;12\right);\left(4;-6\right);\left(-4;6\right);\left(1;-24\right);\left(-1;24\right)\)

Thay vào 2 pt đầu và sử dụng Viet đảo kiểm tra thấy chỉ có cặp \(\left(4;-6\right)\) thỏa mãn, khi đó (a;c)=(0;-4)

Vậy \(x^4-4x^3-2x^2-16x-24=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-4x-6\right)=0\)
Tới đây ez

Cách 2: sử dụng casio

Chọn MODE-7 chế độ Table, nhập hàm \(F\left(X\right)=X^4-4X^3-2X^2-16X-24=0\)

Sau đó "=", START chọn -10 rồi "=", end chọn 10 rồi "=", step chọn 1 rồi "="

Sử dụng nút di chuyển "replay" lên xuống kiểm tra cột F(X), tìm vị trí nào F(X) đổi dấu thì nhìn sang cột X bên trái

Ví dụ ở đây ta thấy F(X) đối dấu lần 1 từ 48 sang -5 tương ứng X khoảng giữa -2 và -1, như vậy pt có 1 nghiệm X nằm giữa -2 và -1

Tiếp tục kiểm tra, lại thấy 1 nghiệm X giữa 5 và 6

Vậy là đủ, bấm MODE-1 thoát ra, nhập tiếp \(X^4-4X^3-2X^2-16X-24\) ngoài màn hình MODE-1 rồi "="

Sau đó shift+SOLVE

Máy hỏi Solve for X thì ta chọn 1 số bất kì giữa -2 và -1, ví dụ -1.5 rồi "="

Nó sẽ cho 1 nghiệm rất xấu, ko vấn đề, bấm shift+RCL (phím nằm trên số 7) rồi phím "-" (chữ A đỏ) để máy gán nghiệm vào biến A

Bấm AC, rồi bấm nút replay đi lên đến khi xuất hiện pt nhập ban đâu, tiếp tục shift+SOLVE, lần này SOLVE forX ta chọn 1 số nằm giữa 4 và 5 (ví dụ 4.5)

Được 1 nghiệm nữa, lại shift-RCL- rồi nút B đỏ (nằm kế nút A đỏ) để máy gán nghiệm vào biến B

Nhấn AC, rồi nhập alpha A+alpha B rồi "="

Violympic toán 9

Nó ra 4

Tiếp tục nhập \(A\times B\) rồi "="

Nó ra -6

Vậy theo Viet đảo, A và B là nghiệm của: \(x^2-4x-6\)

Vậy thì \(x^4-4x^3-2x^2-16x-24\) có 1 nhân tử là \(x^2-4x-6\)

Tiến hành chia đa thức \(x^4-4x^3-2x^2-16x-24\) cho \(x^2-4x-6\) ta được \(x^2+4\)

Vậy \(x^4-4x^3-2x^2-16x-24=\left(x^2+4\right)\left(x^2-4x-6\right)\)

bài toán coi như xong

22 tháng 9 2020

Ánh Dương Clap clap :) Congratulation

5 tháng 8 2018

\(3x-7\sqrt{x}+4=0\)

\(3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)

\(\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)

\(\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\3\sqrt{x}=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}\)

6 tháng 8 2018

ĐK: \(x\ge1\)

\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

<=>  \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\sqrt{\frac{1}{64}\left(x-1\right)}=-17\)

<=>   \(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

<=> \(-\sqrt{x-1}=-17\)

<=>   \(x-1=17^2\)

<=>   \(x=290\)
Vậy....

6 tháng 9 2016

a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)

Đặt \(x-3=t\) pt thành

\(\sqrt{t\left(t-6\right)}-t=0\)

\(\Leftrightarrow t^2-6t=t^2\)

\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)

 

6 tháng 9 2016

b)\(\sqrt{x^2-4}-x^2+4=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

Đặt \(\sqrt{x^2-4}=t\) pt thành

\(t=t^2\Rightarrow t\left(1-t\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).

Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\) 

Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)

 

 

 

 

 

12 tháng 9 2018

d)Điều kiện xác định x khác 1 và x khác -2 Đặt \(a=\frac{x-1}{x+2}\);\(b=\frac{x-3}{x-1}\)

Ta có \(a.b=\frac{x-1}{x+2}.\frac{x-3}{x-1}=\frac{x-3}{x+2}\)

Do đó phương trình viết thành \(a^2+a.b-2b^2=0\)

\(\Leftrightarrow a^2-b^2+a.b-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=-2b\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{x-1}{x+2}=\frac{x-3}{x-1}\\\frac{x-1}{x+2}=\frac{-2.\left(x-2\right)}{x-1}\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=\left(x-3\right).\left(x+2\right)\\\left(x-1\right)^2=-2.\left(x^2-4\right)\end{cases}}}\)

Đến đây bạn có thể giải ra tìm x đc