Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x2 + 2x = a ta có
\(\frac{1}{a-3}\)+ \(\frac{18}{a+2}\)= \(\frac{18}{a+1}\)
<=> a2 - 15a + 56 = 0
<=> a = (7;8)
Thế vô tìm được nghiệm
Sửa đề:\(\frac{3}{x^2+5x+4}+\frac{2}{x^2+10x+24}=\frac{4}{3}=\frac{9}{x^2+3x-18}\)
\(\Leftrightarrow\frac{3}{\left(x+1\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}=\frac{9}{\left(x-3\right)\left(x+6\right)}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}=\frac{1}{x-3}-\frac{1}{x+6}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x-6}=\frac{1}{x-3}-\frac{1}{x+6}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+6}-\frac{1}{x-3}+\frac{1}{x+6}=\frac{4}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}=\frac{4}{3}\)
Tự giải tiếp
Quyên sai rồi, tử là 1 mới đc tách kiểu đó, mà 2 pt đó bằng 4/3 thì xét 1 pt thôi được rồi, bước 3 từ dưới lên sai bét
\(\dfrac{x}{x+3}+\dfrac{6}{x-3}=\dfrac{-18}{9-x^2}\)
\(\Leftrightarrow\dfrac{x}{x+3}+\dfrac{6}{x-3}=\dfrac{18}{x^2-9}\)
\(ĐKXĐ:\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
\(\dfrac{x}{x+3}+\dfrac{6}{x-3}=\dfrac{18}{x^2-9}\)
\(\Leftrightarrow\dfrac{x.\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{6.\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{18}{\left(x+3\right)\left(x-3\right)}\)
\(\Rightarrow x^2-3x+6x+18=18\)
\(\Leftrightarrow x^2-3x+6x=18-18\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow x=0hoặcx+3=0\)
\(\Leftrightarrow x=0\left(tm\right)hoặcx=-3\left(ktm\right)\)
Vậy phương trình có nghiệm là \(x=0\)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=18\)
\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=18\)
\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)=18\)
Đặt \(x^2-5x+5=a\)
⇒ \(\left(a-1\right)\left(a+1\right)=18\)
⇒ \(a^2-1=18\)
⇒ \(a=\pm\sqrt{19}\)
...