\(x^2+\left(\frac{x-1}{x}\right)^2=8\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

\(x^2+\left(\frac{x-1}{x}\right)^2=8\)

\(\Rightarrow x^2-\frac{2}{x}+\frac{1}{x^2}+1=8\)

\(\Rightarrow x^2-\frac{2}{x}+\frac{1}{x^2}-7=0\)

\(\Rightarrow\frac{x^4}{x^2}-\frac{2x}{x^2}+\frac{1}{x^2}-\frac{7x^2}{x^2}=0\)

\(\Rightarrow\frac{x^4-7x^2-2x+1}{x^2}=0\)

\(\Rightarrow x^4-7x^2-2x+1=0\)

Tới đây bạn tự làm nhé =.="

28 tháng 6 2016

x=+-\(\sqrt{\sqrt{23}}+5\) phần căn 2

x=-\(\sqrt{5-\sqrt{23}}\)phần căn 2

x=\(\sqrt{5-\sqrt{ }23}\)phần 2

27 tháng 6 2016

oho

12 tháng 7 2023

Mày nhìn cái chóa j

tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi 

\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)

\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)

\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)

\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)

3 tháng 4 2020

a) Ta thấy x - 1 \(\ne\)0 vì x = 1 không nghiệm đúng phương trình 

Nhân hai vế của phương trình với x - 1 \(\ne\)0 ta được x5 -1 = 0 hay x = 1 ,không thỏa mãn điều kiện trên .

Vậy phương trình vô nghiệm .

b) Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2.x-3\right).\left(2.x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}\)

              <=> 3.(x-2)2 - 3. ( 2.x - 3 ) . ( 2.x + 3 )+ 4. ( x-4 )2 = 0 

             <=> 3. ( x - 4.x + 4 ) - 3. ( 4.x2 -9 ) + 4. ( x-8.x + 16 ) = 0

              <=> -5.x2 -44.x + 103          = 0 

             <=> \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)

             

3 tháng 4 2020

a) Ta thấy x - 1 \(\ne\)0 vì x = 1 không nghiệm đúng phương trình 

Nhân hai vế của phương trình với x - 1 \(\ne\)0 ta được x5 -1 = 0 hay x = 1 ,không thỏa mãn điều kiện trên .

Vậy phương trình vô nghiệm .

b) Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2.x-3\right).\left(2.x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}\)

              <=> 3.(x-2)2 - 3. ( 2.x - 3 ) . ( 2.x + 3 )+ 4. ( x-4 )2 = 0 

             <=> 3. ( x - 4.x + 4 ) - 3. ( 4.x2 -9 ) + 4. ( x-8.x + 16 ) = 0

              <=> -5.x2 -44.x + 103          = 0 

             <=> \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)

9 tháng 9 2018

\(\frac{x\left(3-x\right)}{x+1}\left(x+\frac{3-x}{x+1}\right)=2\) 

\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(\frac{x^2+x+3-x}{x+1}\right)=2\) 

\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{x^2+3}{x+1}=2\) 

\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{3x+3+x^2-3x}{x+1}=2\) 

\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(1+\frac{x^2-3x}{x+1}\right)=2\) 

Đặt \(a=\frac{x\left(3-x\right)}{x+1}\) 

\(\Leftrightarrow a\left(1+a=2\right)\)

27 tháng 9 2019

\frac{x\left(3-x\right)}{x+1}\left(x+\frac{3-x}{x+1}\right)=2x+1x(3−x)​(x+x+13−x​)=2 

\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(\frac{x^2+x+3-x}{x+1}\right)=2⇔x+1x(3−x)​(x+1x2+x+3−x​)=2 

\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{x^2+3}{x+1}=2⇔x+1x(3−x)​.x+1x2+3​=2 

\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{3x+3+x^2-3x}{x+1}=2⇔x+1x(3−x)​.x+13x+3+x2−3x​=2 

\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(1+\frac{x^2-3x}{x+1}\right)=2⇔x+1x(3−x)​(1+x+1x2−3x​)=2 

Đặt a=\frac{x\left(3-x\right)}{x+1}a=x+1x(3−x)​ 

\Leftrightarrow a\left(1+a=2\right)⇔a(1+a=2)

30 tháng 5 2017

\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)

\(\Leftrightarrow4\left(x+\frac{1}{x}\right)^2\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow4\left(x+\frac{1}{x}\right)^2\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2\left(x+\frac{1}{x}\right)^2=x+4\\2\left(x+\frac{1}{x}\right)^2=-x-4\end{cases}}\)

Tới đây thì đơn giản rồi làm tiếp nhé:

30 tháng 5 2017

Bạn nhân lần lượt ra, sau đó rút gọn, sau một hồi sẽ được:

     \(\frac{4\left(x^2+1\right)^4}{x^4}=\left(x+4\right)^2\)

\(\Leftrightarrow\frac{4\left(x^2+1\right)^2}{x^2}=x+4\)

24 tháng 1 2018

Bài 1: 

\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

\(\Leftrightarrow x+66=0\)

\(\Leftrightarrow x=-66\)

b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)

Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)