\(x^2+6x+1-\left(2x+1\right)\sqrt{x^2+2x+3}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2022

\(\text{Đ}K:x^2+2x+3\ge0\\ x^2+6x+1=\left(2x+1\right)\cdot\sqrt{x^2+2x+3}\\ \Leftrightarrow x^2+2x+3+4x+2=\left(2x+1\right)\cdot\sqrt{x^2+2x+3+4}\)

\(\text{ Đặt }\)\(m=\sqrt{x^2+2x+3};n=2x+1\) \(\text{ phương trình trở thành :}\)

\(m^2+2n=mn+4\\ \Leftrightarrow m^2-4-mn+2n=0\\ \Leftrightarrow\left(m-2\right)\left(m+2\right)-n\left(m-2\right)=0\\ \Leftrightarrow\left(m-2\right)\left(m-n-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m-n=-2\end{matrix}\right.\)

`\text{ Với}` \(m=2\\ \Leftrightarrow\sqrt{x^2+2x+3}=2\Leftrightarrow x^2+2x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(N\right)\\x=-\sqrt{2}-1\left(N\right)\end{matrix}\right.\)

`\text{Với}`\(m-n=-2\Leftrightarrow\sqrt{x^2+2x+3}-\left(2x+1\right)=-2\\ \Leftrightarrow\sqrt{x^2+2x+3}=-2+2x+1=2x-1\\ \Leftrightarrow x^2+2x+3=4x^2-4x+1\\ \Leftrightarrow3x^2-6x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{15}}{3}\left(N\right)\\x=\dfrac{3-\sqrt{15}}{3}\left(L\right)\end{matrix}\right.\)

20 tháng 5 2022

weo hay thế:33

7 tháng 4 2016

khó quá

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

4 tháng 8 2019

ĐK: \(-x^2+x+1\ge0\) (xấu quá em hok dám giải đâu:v)

PT \(\Leftrightarrow4x^2-4x+3\left(1-\sqrt{x-x^2+1}\right)=0\)

\(\Leftrightarrow4x\left(x-1\right)+3.\frac{x\left(x-1\right)}{1+\sqrt{x-x^2+1}}=0\)

\(\Leftrightarrow x\left(x-1\right)\left(4+\frac{3}{1+\sqrt{x-x^2+1}}\right)=0\)

Cái ngoặc to hiển nhiên vô nghiệm.

Do đó x = 0 (TM) hoặc x = 1 (TM)

Vậy....

P.s: đúng ko ta mà sao em thấy đơn giản quá, thường liên hợp kiểu này cái ngoặc to xấu xí lắm mà sao lần này nó dễ..

5 tháng 8 2019

bạn làm đúng rồi nha

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

17 tháng 11 2019

Đặt 2x+y=a

pt <=> (a-1)^2+a^2+2a+1=0

<=> (a-1)^2+(a+1)^2=0

Có (a-1)^2 và (a+1)^2>=0 với mọi a

Mà tổng =0

=> ''='' xảy ra <=> a=1 và a=-1

=> vô lí do a ko thể = 2 giá trị

=> pt  vô nghiệm.

17 tháng 11 2019

Bạn ơi, 2x+y khác với x+2y mà bạn

30 tháng 7 2018

a)

DK: x\(\ge\)-2,x\(\ge\)\(\dfrac{1}{2}\)

=>\(\sqrt{4\left(x+2\right)}-\sqrt{2x-1}+\sqrt{9\left(x+2\right)}=0\)

\(\Leftrightarrow2\sqrt{x+2}-\sqrt{2x-1}+3\sqrt{x+2}=0\)

\(\Leftrightarrow5\sqrt{x+2}-\sqrt{2x-1}=0\)

\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)

<=>25x+50=2x-1

=>23x=-51

=>x=\(-\dfrac{51}{23}\)(ko thỏa mãn dk)

=> phương trình vô nghiệm..

b)

ĐKXĐ:\(x\ge1,x\ge-1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x-1\right)}-3\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)(nhận)

Vậy S={1;8}

c) ĐKXĐ:

\(x\ge0\)

\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)

\(\Leftrightarrow-11\sqrt{2x}=-11\)

\(\Leftrightarrow\sqrt{2x}=1\)

\(\Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)

30 tháng 7 2018

Câu a :\(\sqrt{4x+8}-2\sqrt{2x-1}+\sqrt{9x+18}=0\) ( ĐK : \(x\ge\dfrac{1}{2}\) )

\(\Leftrightarrow\sqrt{4x+8}+\sqrt{9x+18}=\sqrt{2x-1}\)

\(\Leftrightarrow2\sqrt{x+2}+3\sqrt{x+2}=\sqrt{2x-1}\)

\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)

\(\Leftrightarrow25\left(x+2\right)=2x-1\)

\(\Leftrightarrow25x+50=2x-1\)

\(\Leftrightarrow23x=-51\)

\(\Leftrightarrow x=-\dfrac{51}{23}< -\dfrac{1}{2}\)

Vậy phương trình vô nghiệm .

Câu b :

\(\sqrt{x^2-1}-\sqrt{9\left(x-1\right)}=0\) ( ĐK : \(x\ge1\) )

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-3\sqrt{\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)}\left(\sqrt{x+1}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

Vậy \(S=\left\{1;8\right\}\)

Câu c : \(\left(3-\sqrt{2x}\right)\left(2-3\sqrt{2x}\right)=6x-5\) ( ĐK : \(x\ge\dfrac{5}{6}\) )

\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)

\(\Leftrightarrow-11\sqrt{2x}+11=0\)

\(\Leftrightarrow-11\left(\sqrt{2x}-1\right)=0\)

\(\Leftrightarrow\sqrt{2x}-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)

Vậy \(S=\left\{\dfrac{1}{2}\right\}\)

Chúc bạn học tốt

a,x4-10x2+9=0

=>(x-1)(x3+x2-9x-9)=0

=> (x-1)(x+1)(x-3)(x+3)=0

=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)

Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}

16 tháng 4 2019

trả lời

h bn tính theo đenta là ra thôi mà

hok tốt