Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
b/ Xác định điều kiện xác định ta có
\(\hept{\begin{cases}2-x^2+2x\ge0\\-7x-8\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{3}\le x\le1+\sqrt{3}\\x\le\frac{-8}{7}\end{cases}}\)
=> Tập xác định của phương trình là tập rỗng nên phương trình vô nghiệm
Cái đề đúng không thế cháu hình như bị vô nghiệm hết cả 2 bài luôn
gợi ý nhé
a (=) 2x.( 4x2+1) = (3x+2). căn(3x+1) ( x>=-1/3)
đặt 2x =a
căn (3x+1) = b (b>=0)
ta có hpt sau a.(a2 +1)=b.(b2+1) (1)
3a-2b2= -2 (2)
giải (1) (=) a3 + a = b3 + b
(=) (a-b).(a2+ab+b2+1) = 0 =) a=b ( vì a2+ab+b2+1>0)
phần còn lại tự giải nhé
b (=) (x+1).(x2+2x+2)=(x+2) . căn(x+1) (x>=-1)
(=) căn (x+1) . [căn(x+1) . (x2+2x+2) -x-2] = 0
=) x=-1
hay căn(x+1) . (x2+2x+2) -x-2=0
cách 1 giải phổ thông ( chuyển vế rồi bình phương)
cách 2 đặt ẩn phụ và lập hệ
đặt căn(x+1)=a (a>=0)
=) a.[x(a2+1)+2] = a2+1 và a2 - x =1
tự giải nhé
c,tạm thời chưa nghĩ ra
Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia
\(2x^2+2x+1=\sqrt{4x+1}\)
\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)
\(4x^4+8x^3+8x^2+4x+1=4x+1\)
\(\Leftrightarrow4x^4+8x^3+8x^2=0\)
\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x=0\)
đặt đk
rồi bphuong 2 vế lên nha
c2: đặt x+5=t
thay vào pt
biểu diễn theo t
hok tốt
ĐKXĐ:\(x\ge-5\)
Đặt \(\sqrt{x+5}=t\ge0\Rightarrow x+5=t^2\)
Ta có hệ: \(\hept{\begin{cases}x^2-4x-3=t\\x+5=t^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=t+7\\x-2=t^2-7\end{cases}}\)
Lấy pt trên cộng pt dưới, vế với vế:
\(\left(x-2\right)^2+\left(x-2\right)=t^2+t\)
\(\Leftrightarrow\left(x-t-2\right)\left(t+x-1\right)=0\)
...
P/s:Em ko chắc
Bài 6:
ĐK: $x\geq \frac{2}{3}$
Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$
PT trở thành:
$a-b=a^2-b^2$
$\Leftrightarrow (a-b)(a+b)-(a-b)=0$
$\Leftrightarrow (a-b)(a+b-1)=0$
Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)
Nếu $a+b-1=0$
$\Leftrightarrow b=1-a$
$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$
$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$
$\Leftrightarrow x+4=2\sqrt{4x+1}$
$\Rightarrow (x+4)^2=4(4x+1)$
$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$
Vậy.......
Bài 5:
ĐK: $x\geq -2$
PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$
Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$
Khi đó PT trở thành:
$3ab=2b^2+a^2$
$\Leftrightarrow a^2-3ab+2b^2=0$
$\Leftrightarrow a(a-b)-2b(a-b)=0$
$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$
$\Leftrightarrow x+2-(x^2-2x+4)=0$
$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)
Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$
$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$
$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)
Vậy.........
\(\sqrt{12-\frac{3}{x^2}}+\sqrt{4x^2-\frac{3}{x^2}}=4x^2\)
\(pt\Leftrightarrow\sqrt{12-\frac{3}{x^2}}-3+\sqrt{4x^2-\frac{3}{x^2}}-1=4x^2-4\)
\(\Leftrightarrow\frac{12-\frac{3}{x^2}-9}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{4x^2-\frac{3}{x^2}-1}{\sqrt{4x^2-\frac{3}{x^2}}+1}=4\left(x^2-1\right)\)
\(\Leftrightarrow\frac{\frac{3\left(x-1\right)\left(x+1\right)}{x^2}}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{\frac{\left(x-1\right)\left(x+1\right)\left(4x^2+3\right)}{x^2}}{\sqrt{4x^2-\frac{3}{x^2}}+1}-4\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{3}{x^2}}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{\frac{\left(4x^2+3\right)}{x^2}}{\sqrt{4x^2-\frac{3}{x^2}}+1}-4\right)=0\)
Pt \(\frac{\frac{3}{x^2}}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{\frac{\left(4x^2+3\right)}{x^2}}{\sqrt{4x^2-\frac{3}{x^2}}+1}-4>0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
ĐK: \(2x+3\ge0\Rightarrow x\ge\frac{-3}{2}\)
Pt \(\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\)\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2+3}-1\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}x+1=0\\\sqrt{2x+3}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\left(tm\text{đ}k\right)\\2x+3=1\end{cases}}}\)
Vậy x=-1 là nghiệm của pt.