Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
PT 2
\(\Leftrightarrow\dfrac{3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\dfrac{2x}{\left(x-2\right)\left(x-3\right)}-\dfrac{1}{\left(x-1\right)\left(x-2\right)}=0\) ( \(x\ne1;x\ne2;x\ne3\))
\(\Leftrightarrow\dfrac{3+2x^2-2x-x+3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
\(\Rightarrow2x^2-3x+6=0\)
=> PT vô nghiệm.
Bài 2:
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(2x^2=-x+3\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2-2x+3x-3=0\)
\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Thay x=1 vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot1^2=2\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)
Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)\(pt\Leftrightarrow\sqrt{x^2+1}=\frac{2x^2-2x+2}{4x-1}\)
\(\Leftrightarrow x^2+1=\frac{4x^4-8x^3+12x^2-8x+4}{16x^2-8x+1}\)
\(\Leftrightarrow\left(x^2+1\right)\left(16x^2-8x+1\right)=4x^4-8x^3+12x^2-8x+4\)
\(\Leftrightarrow16x^4-8x^3+17x^2-8x+1=4x^4-8x^3+12x^2-8x+4\)
\(\Leftrightarrow\left(3x^2-1\right)\left(4x^2+3\right)=0\Rightarrow x=\frac{1}{\sqrt{3}}\)
b)\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)
\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2-3x+2\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{x^2-2x+4}=b\end{cases}\left(a;b\ge0\right)}\) thì
\(\Rightarrow b^2-a^2=x^2-3x+2\)
Làm nốt
\(\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
ĐK:\(x\ge3\)
\(pt\Leftrightarrow\sqrt{x^2-5x+6}-\sqrt{2}+\sqrt{x+1}-\sqrt{5}=\sqrt{x-2}-\sqrt{2}+\sqrt{x^2-2x-3}-\sqrt{5}\)
\(\Leftrightarrow\frac{x^2-5x+6-2}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x+1-5}{\sqrt{x+1}+\sqrt{5}}=\frac{x-2-2}{\sqrt{x-2}+\sqrt{2}}+\frac{x^2-2x-3-5}{\sqrt{x^2-2x-3}+\sqrt{5}}\)
\(\Leftrightarrow\frac{x^2-5x+4}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}=\frac{x-4}{\sqrt{x-2}+\sqrt{2}}+\frac{x^2-2x-8}{\sqrt{x^2-2x-3}+\sqrt{5}}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-4\right)}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}-\frac{x-4}{\sqrt{x-2}+\sqrt{2}}-\frac{\left(x-4\right)\left(x+2\right)}{\left(x+2\right)\sqrt{x^2-2x-3}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{x-1}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{1}{\sqrt{x+1}+\sqrt{5}}-\frac{1}{\sqrt{x-2}+\sqrt{2}}-\frac{x+2}{\left(x+2\right)\sqrt{x^2-2x-3}+\sqrt{5}}\right)=0\)
Suy ra x-4=0 =>x=4
\(\frac{x^2}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
(Quy đồng bỏ mẫu, mẫu chung là 6)
\(\Leftrightarrow2x^2-3\left(2x+1\right)-x+6x=0\)
\(\Leftrightarrow2x^2-6x-3-x+6x=0\)
\(\Leftrightarrow2x^2-x-3=0\)
( a = 2; b = -1; c = -3)
\(\Delta=b^2-4ac\)
\(=\left(-1\right)^2-4.2.\left(-3\right)\)
\(=25>0\)
\(\sqrt{\Delta}=\sqrt{25}=5\)
Pt có 2 nghiệm phân biệt:
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-5}{2.2}=-1\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+5}{2.2}=\frac{3}{2}\)
Vậy:..