\(\sqrt{x^2+x +1}+x^3-3x^2-5x+2=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 7 2021

\(\Leftrightarrow\left(x^2+2\right)\sqrt{x^2+x+1}-2\left(x^2+2\right)+x^3-x^2-5x+6=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(\sqrt{x^2+x+1}-2\right)+\left(x-2\right)\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\dfrac{\left(x^2+2\right)\left(x^2+x-3\right)}{\sqrt{x^2+x+1}+2}+\left(x-2\right)\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x^2+x-3\right)\left(\dfrac{x^2+2}{\sqrt{x^2+x+1}+2}+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-3=0\Rightarrow x=...\\x^2+2=\left(2-x\right)\left(\sqrt{x^2+x+1}+2\right)\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2+2x-2=\left(2-x\right)\sqrt{x^2+x+1}\)

Đặt \(\sqrt{x^2+x+1}=t>0\Rightarrow x^2=t^2-x-1\)

\(\Rightarrow t^2+x-3=\left(2-x\right)t\)

\(\Leftrightarrow t^2+\left(x-2\right)t+x-3=0\)

\(\Leftrightarrow t^2-1+\left(x-2\right)\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t+x-3\right)=0\)

\(\Leftrightarrow t=3-x\)

\(\Leftrightarrow\sqrt{x^2+x+1}=3-x\) (\(x\le3\))

\(\Leftrightarrow x^2+x+1=x^2-6x+9\)

\(\Leftrightarrow x=\dfrac{8}{7}\)

NV
27 tháng 6 2019

a/ \(cos\left(x+15^0\right)=1\Leftrightarrow x+15^0=k360^0\Rightarrow x=-15^0+k360^0\)

b/ \(cos\left(3x+\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\Rightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\3x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)

c/ \(cos\left(4x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{3}\Rightarrow cos\left(4x-\frac{\pi}{4}\right)=cosa\)

\(\Rightarrow\left[{}\begin{matrix}4x-\frac{\pi}{4}=a+k2\pi\\4x-\frac{\pi}{4}=-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{a}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{16}-\frac{a}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

d/ \(cos4x=cos\left(x+\frac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=4x+k2\pi\\x+\frac{\pi}{3}=-4x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{9}+\frac{k2\pi}{3}\\x=-\frac{\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)

e/ \(cos5x=-cos3x=cos\left(\pi-3x\right)\Rightarrow\left[{}\begin{matrix}5x=\pi-3x+k2\pi\\5x=3x-\pi+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=-\frac{\pi}{2}+k\pi\end{matrix}\right.\)

NV
19 tháng 10 2020

1.

\(4\left(1-cos^23x\right)+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}-4=0\)

\(\Leftrightarrow-4cos^23x+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=-\frac{1}{2}\\cos3x=\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{2\pi}{9}+\frac{k2\pi}{3}\\x=\pm\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

2.

\(\Leftrightarrow\frac{\sqrt{3}-1}{2\sqrt{2}}sinx-\frac{\sqrt{3}+1}{2\sqrt{2}}cosx=-\frac{\sqrt{3}-1}{2\sqrt{2}}\)

\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=-cos\left(\frac{5\pi}{12}\right)\)

\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=sin\left(-\frac{\pi}{12}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5\pi}{12}=-\frac{\pi}{12}+k2\pi\\x-\frac{5\pi}{12}=\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
19 tháng 10 2020

3.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(3tan^2x+8tanx+8\sqrt{3}-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\sqrt{3}\\tanx=\frac{3\sqrt{3}-8}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=arctan\left(\frac{3\sqrt{3}-8}{3}\right)+k2\pi\end{matrix}\right.\)

4.

\(\Leftrightarrow sin\left(x-120^0\right)=-cos\left(2x\right)=sin\left(2x-90^0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-90^0=x-120^0+k360^0\\2x-90^0=300^0-x+k360^0\end{matrix}\right.\)

\(\Leftrightarrow...\)

5.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x=\frac{1}{2}-\frac{1}{2}cos6x\)

\(\Leftrightarrow cos6x=cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=2x+k2\pi\\6x=-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
28 tháng 11 2019

a/ Thiếu đề, sau dấu "-" hình như còn gì đó

b/ \(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=sin\left(\frac{\pi}{4}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

c/ \(\Rightarrow sin2x=-sinx\Leftrightarrow sin2x=sin\left(-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x=-x+k2\pi\\2x=\pi+x+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\pi+k2\pi\end{matrix}\right.\)

d/ \(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1\)

\(\Leftrightarrow sinx.cosx=0\Leftrightarrow sin2x=0\)

\(\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)

e/ f/ Thiếu đề

g/ \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=-cos2x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=cos\left(\pi-2x\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=2x+k2\pi\\3x=-2x+k2\pi\\3x=\pi-2x+k2\pi\\3x=2x-\pi+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=-\pi+k2\pi\end{matrix}\right.\)

NV
13 tháng 4 2020

1/ \(y=x^{-1}+\frac{2}{3}x^{-2}-\frac{2}{3}\Rightarrow y'=-\frac{1}{x^2}-\frac{4}{3x^3}\)

\(3x^3y'+3x+4=3x^3\left(-\frac{1}{x^2}-\frac{4}{3x^3}\right)+3x+4\)

\(=-3x-4+3x+4=0\) (đpcm)

2/ \(y'\le0\)

\(\Leftrightarrow3x^2-10x+7\le0\)

\(\Leftrightarrow1\le x\le\frac{7}{3}\)

NV
29 tháng 10 2020

1d.

Đề ko rõ

1e.

\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)

\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)

\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
29 tháng 10 2020

2b.

Đề thiếu

2c.

Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)

\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)

\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)

\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)

\(\Leftrightarrow...\)

1: \(\Leftrightarrow4\cdot\dfrac{1+\cos2x}{2}-6\cdot\dfrac{1-\cos2x}{2}+5\sin2x-4=0\)

\(\Leftrightarrow2+2\cos2x-3+3\cos2x+5\sin2x-4=0\)

\(\Leftrightarrow5\sin2x+5\cos2x=5\)

\(\Leftrightarrow\cos2x+\sin2x=1\)

\(\Leftrightarrow\sqrt{2}\cdot\sin\left(2x+\dfrac{\Pi}{4}\right)=1\)

\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{4}=\dfrac{\Pi}{4}+k2\Pi\\2x+\dfrac{\Pi}{4}=\dfrac{3\Pi}{4}+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

2: \(\Leftrightarrow\sqrt{3}\cdot\dfrac{1+\cos2x}{2}+\sin2x-\sqrt{3}\cdot\dfrac{1-\cos2x}{2}-1=0\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\cos2x+\sin2x+\sqrt{3}\cdot\dfrac{\cos2x-1}{2}-1=0\)

\(\Leftrightarrow\sin2x+\dfrac{\sqrt{3}}{2}\cos2x+\dfrac{\sqrt{3}}{2}\cos2x-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}-2}{2}=0\)

\(\Leftrightarrow\sin2x+\sqrt{3}\cos2x=\dfrac{\sqrt{3}-\sqrt{3}+2}{2}=1\)

\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{3}=\dfrac{\Pi}{6}+k2\Pi\\2x+\dfrac{\Pi}{3}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{12}\Pi+k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

NV
18 tháng 10 2020

e.

\(3\left(1-sin^2x\right)-5sinx-1=0\)

\(\Leftrightarrow-3sin^2x-5sinx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{3}\\sinx=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

f.

\(2\left(2cos^2x-1\right)-cosx+7=0\)

\(\Leftrightarrow4cos^2x-cosx+5=0\)

Phương trình vô nghiệm

NV
18 tháng 10 2020

g.

\(\Leftrightarrow\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)=2\)

\(\Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=\sqrt{2}>1\)

Phương trình vô nghiệm

h.

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

NV
1 tháng 10 2020

a/

\(\Leftrightarrow3\left(1-sin^22x\right)+4sin2x-4=0\)

\(\Leftrightarrow-3sin^22x+4sin2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(\frac{1}{3}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(\frac{1}{3}\right)+k\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)

NV
1 tháng 10 2020

f/

\(\Leftrightarrow4\left(1-2sin^2\frac{x}{2}\right)-5sin\frac{x}{2}=1\)

\(\Leftrightarrow8sin^2\frac{x}{2}+5sin\frac{x}{2}-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\frac{x}{2}=-1\\sin\frac{x}{2}=\frac{3}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\pi+k4\pi\\x=2arcsin\left(\frac{3}{8}\right)+k4\pi\\x=2\pi-2arcsin\left(\frac{3}{8}\right)+k4\pi\end{matrix}\right.\)

11 tháng 7 2018

1. \(4\cos^2x-6\sin^2x+5\sin2x-4=0\)

\(\Leftrightarrow4\cos^2x-6\sin^2x+10\sin x\cos x-4\left(\cos^2x+\sin^2x\right)=0\)

\(\Leftrightarrow10\sin x\cos x-10\sin^2x=0\)

\(\Leftrightarrow10\sin x\left(\cos x-\sin x\right)=0\)

2. \(\sqrt{3}\cos^2x+2\sin x\cos x-\sqrt{3}\sin^2x-1=0\)

\(\Leftrightarrow\left(\sqrt{3}\cos^2x+\sin x\cos x\right)+\left(\sin x\cos x-\sqrt{3}\sin^2x\right)-1=0\)

\(\Leftrightarrow2\cos x\left(\dfrac{\sqrt{3}}{2}\cos x+\dfrac{1}{2}\sin x\right)+2\sin x\left(\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x\right)-1=0\)

\(\Leftrightarrow2\cos x.\cos\left(\dfrac{\Pi}{6}-x\right)+2\sin x.\sin\left(\dfrac{\Pi}{6}-x\right)-1=0\)

\(\Leftrightarrow\cos\dfrac{\Pi}{6}+\cos\left(2x-\dfrac{\Pi}{6}\right)+\cos\left(2x-\dfrac{\Pi}{6}\right)-\cos\dfrac{\Pi}{6}-1=0\)

\(\Leftrightarrow\cos\left(2x-\dfrac{\Pi}{6}\right)=\dfrac{1}{2}\)

3. \(2\sin^22x-3\sin2x\cos2x+\cos^22x=2\)

\(\Leftrightarrow2\sin^22x-3\sin2x\cos2x+\cos^22x-2\left(\sin^22x+\cos^22x\right)=0\)

\(\Leftrightarrow3\sin2x\cos2x+\cos^22x=0\)

\(\Leftrightarrow\cos2x\left(3\sin2x+\cos2x\right)=0\)

-TH1: ...

- TH2: \(\cos2x=-3\sin2x\)\(\cos^22x+\sin^22x=1\) suy ra ...

4. \(4\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x+3\sin^2\dfrac{x}{2}=3\)

\(\Leftrightarrow4\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x+3\sin^2\dfrac{x}{2}-3\left(\cos^2\dfrac{x}{2}+\sin^2\dfrac{x}{2}\right)=0\)

\(\Leftrightarrow\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x=0\)

\(\Leftrightarrow\dfrac{1+\cos x}{2}+\dfrac{1}{2}\sin x=0\)

\(\Leftrightarrow\cos x+\sin x=-1\)