Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+y^2+6y+5=0
<=> x^2+(y^2+6y+9)=4
<=>x^2+(y+3)^2=4=1.4=4.1( vì x^2; (y+3)^2 đều >=0)
từ đó ta lập bảng là xong, bạn tự làm nốt nha!
Viết pt trên thành pt bậc 2 đối với y
\(y^2+6y+\left(x^2+5\right)=0\) (1)
Pt (1) có nghiệm \(\Leftrightarrow\Delta'=3^2-\left(x^2+5\right)\ge0\Leftrightarrow-x^2+14\ge0\)
\(\Leftrightarrow-\sqrt{14}\le x\le\sqrt{14}\).Do x nguyên nên:\(-2\le x\le3\)
Thay vào giải tiếp bình thường.
a)
(x2- 4 ) - ( x - 2 )( 3 - 2x ) = 0
=> x2 -4 - ( 3x - 2x2 - 6 + 4x ) = 0
=> x2 + 2x2 - 7x + 2 =0
=> 3x2 - 7x +2 = 0
=> x = 1/3 và x = 2
b)
2x3 + 6x2 = x2 + 3x
2x2(x+3) = x(x+3)
<=> x(x+3)(2x-1) = 0
<=> x=0 x=-3 và x=1/2
a)(x2 _4)–(x-2)(3-2x)=0
<=>3x^2-7x+2=0
=>(x-2)(3x-1)=0
=>x-2=0 hoặc 3x-1=0
=>x=2 hoặc x=1/3
b) 2x3+ 6x2 =x2+3x
=> 2x3+5x2-3x=0
<=>2x3+5x2-3x=x(x+3)(2x-1)
=>x(x+3)(2x-1)=0
=>x=0 hoặc x+3=0 hoặc 2x-1=0
=.x=0 hoặc -3 hoặc 1/2
Tìm x để các phương trình sau nghiệm nguyên:
a,x2+y2-2x-6y+10=0
b,4x2+y2+4x-6y-24=0
c, x2+y2-x-y-8=0
a) x2+y2-2x-6y+10=0 <=>(x2-2x+1)+(y2-6y+9)=0
(x-1)2+(y-3)2=0 mà (x-1)2 và (y-3)2 luôn lớn hơn hoặc bằng 0
=>(x-1)2=0=>x-1=0=>x=1
=>(y-3)2=0=>y-3=0=>y=3
Ta có : 9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
<=> 9x2 - 18x + 9 + y2 - 6y + 9 + 2z2 + 4z + 2 = 0
<=> 9(x2 - 2x + 1) + (y2 - 6y + 9) + 2(z2 + 2z + 1) = 0
<=> 9(x - 1)2 + (y - 3)2 + 2(z + 1)2 = 0 (*)
Vì \(9\left(x-1\right)^2\ge0\forall x\in R\)
\(\left(y-3\right)^2\ge0\forall y\in R\)
\(2\left(z+1\right)^2\ge0\forall z\in R\)
Nên : pt (*) <=> \(\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy pt có nhiệm (x;y;z) = (1;3;-1)